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Abstract

Anthropogenic land use change is the leading threat to biodiversity. This paper

studies how infrastructure expansion degrades biodiversity and the role of local insti-

tutions in mitigating species loss. Combining new data from India on infrastructure-

driven deforestation with one million birdwatching diaries, I document a sizeable

infrastructure-biodiversity tradeoff. Forest encroachment by transport, irrigation, re-

settlement camps, and mining projects account for 20% of total species loss. The

tradeoff is especially acute in already-fragmented landscapes, and species diversity

does not recover in the medium run. Yet the extent of species loss is more than halved

when local institutions enable marginalized communities, who are often excluded

from project planning, to mobilize around their interests. Informed consent between

developers and tribal communities is a key mechanism, underscoring the importance

of inclusive institutions for balancing development and conservation.
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1 Introduction

Global infrastructure spending totalled $USD 2.3 trillion in 2015 (Oxford Economics, 2017).
Although crucial for economic growth, infrastructure expansion narrows the frontier be-
tween human activity and fragile ecosystems. The ecological threat from encroachment
is especially acute in the tropics, home to two-thirds of Earth’s biodiversity yet where
over 60% of global infrastructure spending occurs (FAO and UNEP, 2020). This is exac-
erbated by the fact that millions of indigenous people—who have supported biodiversity
for millennia—are displaced by, disaffected by, or excluded from project planning.

Economists have long sought how to reduce environmental costs of development
(Grossman and Krueger, 1995; Dasgupta et al., 2002; Copeland and Taylor, 2004). Bio-
diversity receives little attention in this literature (Frank and Schlenker, 2016), let alone
grassroots solutions for balancing development and conservation. Filling this gap thus
requires not only estimates of the ecological threat from infrastructure, but also the role
of local institutions for neutralizing it.

My first goal is to provide a deeper understanding of the extent to which infrastructure
expansion drives biodiversity loss. I call this the infrastructure-biodiversity tradeoff. The
second goal is to investigate the role of decentralized forest governance in mitigating
the tradeoff. Better understanding these socio-ecological and institutional processes can
assist countries in meeting the dual objectives of development and conservation.

The broad setting is the tropics, where over half of global deforestation occurs (Pacheco
et al., 2021). India notably avoided widespread forest loss despite recording rapid eco-
nomic growth (Forest Survey of India, 2019). It is unclear whether this was due to con-
certed tree-planting or changing definitions of forest cover. Even if development did leave
forests unscathed, important inhabiting species may still become threatened and require
policy attention. Elusive measurement of such species has led to biodiversity being over-
looked in previous studies (Foster and Rosenzweig, 2003; Burgess et al., 2012).

The first part of this paper estimates the infrastructure-biodiversity tradeoff in India’s
forests between 2015-2020. This constitutes a valuable setting for three reasons. First,
India is among the planet’s most biodiverse countries, home to 8% of global biodiver-
sity and 12% of bird diversity (Venkataraman and Sivaperuman, 2018; Jayadevan et al.,
2016). Second, India’s biodiversity is documented by active “citizen scientists” who up-
load sightings on species-specific (e.g. eBird) or general (e.g. iNaturalist) platforms. India
boasts the highest eBird membership of any developing country, with their geocoded
uploads serving as a new, high-resolution biodiversity repository unmatched in the liter-
ature. Third, India publicly reports forest encroachments by infrastructure. Deforestation
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for building roads, mines and other projects now account for 17% of yearly forest loss (au-
thors calculation). The Forest Act (1980) mandates environmental review of such projects
before construction. The review process underwent a transparency initiative in 2014, un-
locking new administrative data for estimating threats to biodiversity.

To measure infrastructure, I digitize the universe of deforestation permits awarded to
firms that passed environmental review. This includes 7,000 scraped from a public portal
and 2,000 digitized by hand. Each one describes a forest patch diverted for construction
and uniquely bundles infrastructure and deforestation into a single variable. For analysis,
permits are aggregated into a cumulative measure of district-monthly forest area diverted
for development. This new data improves on satellite measures because the latter over-
looks the source of deforestation. Pixel values are also annual aggregates, which masks
deforestation throughout the year. In contrast, my data directly measures infrastructure-
driven deforestation and features monthly landscape changes as projects roll out. I do,
however, use satellite data to verify that approved projects trigger actual deforestation.

To measure biodiversity, I obtain one million geocoded birdwatching diaries from
eBird, the world’s largest crowd-sourced platform for wildlife sightings (Sullivan et al.,
2009). Birds are a credible indicator for ecosystem health, sensitive to environmental
change, and documented with high precision (Morrison, 1986; Fraixedas et al., 2020).
Each diary reflects a birdwatching session (i.e., a “trip”) and lists the date, GPS coor-
dinates, and a taxonomy of species sightings. I count the number of species in each
diary, yielding a biodiversity dataset with unparalleled spatiotemporal resolution, span-
ning 95% of districts from the Himalayas to the Western Ghats.

The matched panel enables a two-way fixed effects (TWFE) design to estimate the im-
pact of infrastructure on bird species diversity (hereafter, species diversity) in a typical
Indian district. I decompose estimates by project category to show which types of infras-
tructure are the least and most harmful. I also stratify districts by baseline forest cover to
reveal whether projects have different effects in pristine or already-fragmented habitats.

Despite the promise of citizen science, its opportunistic nature yields more sample se-
lection than typical administrative data. eBirders tend to visit more biodiverse locations,
especially in the Western Ghats. There is also a Siberian bird migration in winter, and a
lull in birdwatching activity during monsoons, which induces seasonality. Lastly, users
possess varying abilities and learning rates, complicating inference from cross-user com-
parisons. I employ district fixed effects to address site choice, state-month fixed effects to
address seasonality, and user-by-year fixed effects to purge ability and learning biases.

Endogenous sorting of birds, birdwatchers, and projects is the main threats to iden-
tification, even with the fixed effects. If construction pushes birds into less-fragmented
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districts, the control group becomes contaminated. Similarly, if users sort towards bio-
diverse districts, then estimates are upward biased. I address both issues with spatial
lags. Species immigration into a district appears uncorrelated with nearby development.
The number of district users also appears unchanged when nearby districts become de-
veloped. While these tests help rule out endogenous bird and birdwatcher behaviour,
omitted variables bias from strategic project siting remains a key identification concern.

The main analysis yields four key findings. First, infrastructure development triggers
substantial species loss. Ten km2 of infrastructure encroachments reduce species diversity
by 4%, as observed by the average eBird user. In contrast, the portion of these projects
falling on non-forest land has no impact on species diversity, suggesting that habitat loss
is a key mechanism. In aggregate, approximately 20% of the observed decline in species
diversity over the study period can be attributed to development in India’s forests.

Second, nearly all project categories drive the infrastructure-biodiversity tradeoff. The
top three most harmful are resettlement, transport, and irrigation projects. Resettlements
are akin to camps for relocating displaced communities. The negative impact of mining
is surprisingly small, which I show is due to low eBird activity in mining districts. The
mining impact doubles when the sample is restricted to higher-activity districts.

Third, some species are more threatened by infrastructure development than others.
I manually match bird taxonomies with their IUCN Red List status and physiological
traits, and then count the number of times users observe species in each category. Pois-
son estimates show a sharp decline in the abundance of common and vulnerable species
following infrastructure expansion. Forest birds and non-migrant species are also espe-
cially sensitive, whereas wetland birds are unaffected.

Lastly, I find that species are more resilient to infrastructure development in intact
forests. Heterogeneity by baseline forest cover shows that the infrastructure-biodiversity
tradeoff is halved in districts with one standard deviation higher initial forest cover. This
evidence therefore supports earmarking degraded landscapes for protection.

Despite a variety of robustness checks, parallel trends, and no evidence of endogenous
sorting, causal interpretability of estimates may remain in question since infrastructure is
non-random. Yet the infrastructure-biodiversity tradeoff is also apparent under an in-
strumental variables (IV) design based on close elections. Since winner identity in close
elections is essentially a coin toss, I use the fraction of district constituencies where an in-
cumbent just barely won in close elections as an instrument for infrastructure. The second
stage, once again, shows that forest encroachment prompts species decline. One concern
is that the exclusion restriction assumption—that incumbents influence local ecology only
through sanctioning forest diversion for infrastructure—is quite strong. Another is that
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close-election estimates do not generalize to non-competitive districts. I thus view this
approach as a validation of coefficient sign rather than a second set of main estimates.

The second part of the paper studies which institutions minimize biodiversity loss.
India is home to 200 million members of forest-dependent tribes, who have stewarded
biodiversity on traditional forests for millennia. Today, they are among the country’s
most economically vulnerable, politically excluded, and face livelihood loss as forests are
handed over to commercial interests. I study whether inclusive institutions that empha-
size decentralized decision-making can mitigate the infrastructure-biodiversity tradeoff.

Data are from Banerjee and Iyer (2005) and indicate whether district institutions favour
elites (extractive) or are more inclusive of the masses. The measure is based on whether
historic tax collection was via a middleman. Banerjee and Iyer (2005) find that non-
middleman areas feature higher equality today and better ability of the disenfranchised to
mobilize. If tribal groups can better protect their livelihoods—which hinges on protecting
forests—in inclusive districts, then better conservation outcomes are expected there.

The infrastructure-biodiversity tradeoff estimated in the first part of the paper is sig-
nificantly smaller in inclusive districts. Implied magnitudes are large; the tradeoff is 78%
smaller in these districts, where disaffected groups can better engage in the development
process. Results are independent of tribal population share, suggesting that heterogene-
ity reflects institutional differences, not population differences. These results underscore
the importance of inclusive forest governance in achieving sustainable development.

The paper concludes by probing mechanisms through which inclusive institutions
mitigate the infrastructure-biodiversity tradeoff. I extract unique data from project per-
mits reporting whether tribes were consulted and whether supplemental cost-benefit
analyses were commissioned during project review. I find that projects approved in in-
clusive districts are associated with significantly higher rates of informed consent and
environmental scrutiny. These results indicate that community participation in project
planning, along with higher environmental standards, are key features of inclusive insti-
tutions that balance development and conservation.

Literature Contributions This paper contributes to three literatures. My main contribu-
tion is to provide the first country-wide evidence that infrastructure expansion triggers
local species loss. Most economics studies that quantify infrastructure externalities esti-
mate pollution costs (Currie et al., 2015; Hanna and Oliva, 2015). A handful have esti-
mated forest loss: Asher et al. (2020) and Garg and Shenoy (2021) find surprisingly little
effect of infrastructure on forest cover in India, and Baehr et al. (2021) also find muted
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effects in Cambodia. While this suggests that ecosystems are resilient to infrastructure1,
my results indicate otherwise using detailed species-level data.

The most similar paper is Liang et al. (2021), who study GDP and biodiversity in the
United States2. In contrast to GDP, which subsumes underlying mechanisms, my data
captures infrastructure development at the forest frontier. Despite the differences, our
results are consistent: development drives species loss.

The second contribution of this paper is to extend the ecology literature by expanding
the spatiotemporal scope of data and integrating empirical techniques from economics. In
ecology, field workers often count species in small transects with different levels of human
activity in one time period. Although citizen science dramatically improves spatial and
temporal coverage, much interest from ecologists has been in characterizing its endogene-
ity rather than using it for causal inference (Callaghan et al., 2019; Kelling et al., 2019). I
advance this literature by quasi-experimentally estimating the infrastructure-biodiversity
tradeoff across a large developing nation over six years.

The third contribution is to extend research at the intersection of political economy
and conservation. A seminal literature shows how historic institutions shape modern
economic development (Nunn, 2009), yet few have considered biodiversity outcomes3. In
contrast, the conservation literature acknowledges that institutions can moderate economy-
environment tradeoffs, yet few have tested the claim (Börner et al., 2020). I advance this
literature by credibly estimating of the role of institutions in reducing species loss. In
doing so, I am also able to pin down mechanisms. Duflo and Pande (2007) use the same
institutional data to show that the negative poverty impact of dams is muted in inclu-
sive districts, arguing that the poor can better access compensation in these districts. Lee
(2019) confirm that inclusive districts have better state capacity. My paper ties together
this literature by providing evidence of a mechanism with “teeth”: inclusive institutions
feature higher rates of informed consent between authorities and minorities.

The next section provides background on infrastructure-driven deforestation in India.
Section 3 introduces the construction permit and citizen science data. Section 4 documents
stylized facts from the data and Section 5 outlines the research design. Section 6 presents
estimates of the impact of infrastructure expansion on biodiversity. Section 7 explores the
role of institutions for mitigating the tradeoff. Section 8 concludes.

1Kaczan (2020) find that road building in India reduces tree cover in remote areas and increases tree
cover in peri-urban areas. The net effect may explain the small effects found in previous studies.

2Related studies include Liang et al. (2020), which studies effects of pollution on bird abundance Noack
et al. (2021), and Noack et al. (2019), which studies the impact of farm size on bird diversity.

3Prior work has studied institutions and water conservation (Libecap, 2011; Hagerty, 2021) and forest
conservation (Börner et al., 2020; Lal et al., 2021). Tsuda et al. (2023) study place-based policy and resource
depletion. Noack et al. (2021) show that land institutions predict farm size and bird diversity.
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2 Background

Forest Act (1980) Protects Forests India’s Forest (Conservation) Act (1980) protects forests
from “conversion to non-forest uses” (MoEFCC, 1980). Infrastructure is the main regu-
lated activity because it fragments important habitats. When non-forest sites are unfea-
sible, the Act permits infrastructure encroachments pending a rigorous environmental
review. It also sets up a forest advisory committee (FAC) of government officials and
forestry experts to rule on construction proposals. Projects involving any amount of de-
forestation, on any land recorded as forest irrespective of ownership, undergo review.

Despite the Act’s intent, huge swathes of India’s forests have been transferred to pub-
lic and private firms. Between 1985-2014, about 4,000 km2 of forest were clearcut for the
construction of 23,000 infrastructure projects. Total deforestation during this period was
24,223 km2 (Meiyappan et al., 2017)4, implying that infrastructure intrusions accounted
for 17% of India’s deforestation during the three decades preceding this study.

Informed Consent Since 2006 Infrastructure encroachment is especially harmful to In-
dia’s Scheduled Tribes. Numbering at 200 million, tribes are forest-dependent custodians
of biodiversity, yet have been historically excluded from forest-related development de-
cisions. In 2006, the landmark Forest Rights Act (FRA) granted tribes forest management
rights, including the right to informed consent with developers. As shown in Section 7,
enforcement in unequal across districts. I exploit this variation to study whether infras-
tructure is more sustainable under inclusive institutions.

Project Approval Process The journey of a project proposal is known as the Forest
Clearance (FC) process (MoEFCC, 2003). There are two stages: stage-I approval is granted
after rigorous environmental review (see Appendix S3.1 for details). To receive stage-II
approval, firms pay a state-specific amount into a tree-planting fund. Despite potential to
offset my findings, the fund is fraught with issues and tree-planting is rarely carried out.
A recent audit finds that just 7% of land secured for afforestation between 2006-12 had
been planted in 2013 (MoEFCC, 2013). Other studies have found no existence of plan-
tations during field visits (World Rainforest Movement, 2019). Sanctioned afforestation
thus poses minimal threat to my research design.

Another stage-II requirement is for the District Forest Office to submit evidence of
tribal informed consent to the central Ministry of Environment. After fundraising and

4Forest loss≈ 18,000 km2 from 1985-’05 (Meiyappan et al., 2017), and 6223km2 from ’06-14 (Forest Watch)
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Figure 1: Infrastructure Encroachments and eBird Activity
Note: Panel A is a map of 2015 forest cover (Townshend et al., 2017). Pixels are shaded by percent forest
cover. Panel B maps the number of infrastructure projects approved for construction between 2015-2020.
Panel C shows GPS coordinates of all birdwatching trips recorded through eBird during the study period.

FRA compliance, stage-II approval is awarded and the firm begins deforestation. In Sec-
tion 4.1, I verify that stage-II approvals trigger actual deforestation using satellite data.

Project Timelines Projects take many years to complete after permit approval. 60% of
Indian projects experience time overruns, with dispute settlement between owners and
contractors being the main cause of delay (Salunkhe and Patil, 2014; Prasad et al., 2019).
Disputes take around 6.5 years to resolve (Construction Federation of India, 2015). With
a six-year study period, and other delays likely occurring, it is unlikely that projects will
complete construction during the study period. Non-completion means that my esti-
mates will capture species loss from habitat loss during construction, not broader general
equilibrium effects once the project is operational.

3 Data

I estimate the infrastructure-biodiversity tradeoff by drawing on several new datasets. I
use newly digitized FC permits to measure development in India’s forests. Species diver-
sity is from eBird, a popular e-notebook for birdwatchers. The final panel covers all of
India from 2015 to 2020. This section describes the data and provides summary statistics.
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Table 1: Summary Statistics of Forest Infrastructure Projects (2015-2020)

Num. Projects Mean Size (ha.) SD (ha.) Total Area (ha.)

Electricity 882 27.5 228.4 24,274.5
Irrigation 430 57.5 252.5 24,731.1
Mining 229 148.2 253.7 33,927.6
Other 4,448 2.4 34.5 10,486.4
Resettlement 44 71.5 92.9 3,147.2
Transportation 2,296 10.9 32.5 24,986.0

Total 8,329 14.6 110.6 121,552.9

Note: Data are at the project level. Total area is the summed deforestation area of all projects in a category.

3.1 Forest Clearances

Data Collection Administrative data on infrastructure-driven deforestation rarely ex-
ist, and previous work mainly relies on satellite data. Yet satellites have difficulty dis-
tinguishing anthropogenic intrusions from natural sources (e.g. forest fires). They also
report annual data, which mask within-year encroachments and their ecosystem impacts.

I construct a dataset of monthly infrastructure encroachments using newly digitized
stage-II FC proposals approved between 2015-2020. Proposals submitted after the re-
view process went digital in 2014, and approved during the study period (N=6,597),
were scraped from the online portal (the digital subsample) 5. Another 1,732 submit-
ted pre-digitization, but approved during the study period, were digitized by hand (the
manual subsample). These 8,329 projects comprise the universe of industrial forest en-
croachments in India during the study period. Figure S1 shows an example approval
letter authorizing 185 ha. of deforestation for an irrigation project in Rajasthan. Figure 1B
shows the full spatial distribution: projects encroach into both sparse and dense forests
(Figure 1B), with dense forests in the North suffering the most encroachment.

Variables and Summary Statistics Both the digital and manual subsamples report de-
forestation and project category (road, mine, etc.). District-wise deforestation is provided
for multi-district projects (e.g. transmission lines). Digital applications additionally re-
port non-forest land diversion, ownership (public, private, neither), and shape (linear,
nonlinear)6. Digital applications also report whether a cost-benefit analysis was commis-
sioned and whether informed consent was obtained, enabling analysis of how institutions
mediate ecosystem impacts (Section 7). Appendix S3.2 provides more data details.

5Data are publicly available at www.parivesh.nic.in/
6Linear projects are contiguous in terms of land (roads). Nonlinear projects are non-contiguous (mines)
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The 8,329 projects collectively triggered 122,000 ha. of deforestation between 2015-2020
(Table 1). The average encroachment is 14 ha., roughly 20 soccer pitches. Mines and reset-
tlements are few in number but massive in size. Mines account for 3% of projects but 30%
of deforestation. Resettlements are least common but second to mines in size. Contrast-
ingly, “other” projects (not in the listed categories) are most common, but reflect small
patches (see Appendix S3.2)7. Transportation is the only category that is both numer-
ous and accounts for a large (20%) share of total deforestation. Appendix S3.3 provides
summary statistics by project ownership and shape.

Panel Data Structure Project data are aggregated to the district and year-month level,
both overall and by category (e.g. deforestation in January 2018 for electricity projects in
Delhi). I do this because the district is the only consistent location identifier. Districts
are also one administrative unit below the state and form a natural unit for local policy
implementation. The panel is balanced by zero-filling project approvals in districts not in
the full sample (Figure 1B). This is reasonable since all projects undergo the FC process,
and the full sample contains the universe of approvals.

3.2 eBird

eBird entered India in late-2014 and only requires a smartphone. Each birdwatching ses-
sion (hereafter, “trip”) is GPS-tracked and includes a taxonomy of species sightings called
a checklist. Checklists are vetted by ornithologists on each upload (Sullivan et al., 2009).
eBird is revolutionary for research because it documents both species observations and
the observation process. The latter includes: trip date, duration, protocol (e.g. stationary
or travelling), and whether all observed species were recorded, called a complete check-
list. These data help identify checklists best reflecting the local species pool.

Sample Selection My sample frame is the eBird Basic Dataset (eBird Basic Dataset,
2019) for 2015-2020, comprising all trips during this period. I follow the eBird man-
ual (Strimas-Mackey et al., 2020) to identify representative checklists which, here, means
checklists best reflecting local species diversity at the user’s location. To do this, the man-
ual suggests keeping complete, stationary and travelling protocols (99% of sample) as
well as lists collected in < 5hrs and with group size ≤ 10. Next, I link trip coordinates to
2011 district borders, which provides a matching key and reveals off-coast boating trips,
which are dropped. This leaves 1,049,930 trips by 17,634 users across 628 districts (out of

7The most common “other” projects are approach roads (driveways) and fibre optic lines.
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640). Figure 1C plots the trips: areas with high forest cover and development activity are
popular. Users are also active in South and Central India. Activity is low in the Southeast,
despite moderate forest cover, likely due to the remoteness of this region.

Outcomes and Aggregation Despite having 1 million trips, the final panel aggregates to
the user-district-month level for consistency with the unit of analysis in the infrastructure
data. Aggregation reduces the effective sample to 161,896. The main outcome is mean
species richness—the number of unique species observed on a trip—across each user’s
trips in a district-year-month. Richness proxies the number and stability of ecosystem
services and is a widely used biodiversity metric (Fleishman et al., 2006). I also manually
code each species with their IUCN Red List status8 (low concern, vulnerable, etc.), habitat
type (forest, wetland, etc.), and other traits9 (Appendix S4.4). This enables me to study
which species are most sensitive to infrastructure development.

One concern is that aggregating over trips masks within-district sorting. I test for this
in Section 5.3.3 and find no evidence that users sort within districts after project approval.

Data Representativity Over 1,600 trips by 100 users are recorded in the average district
(Table S1). Users are quite active, recording in four districts, two states, and six year-
months during the study period. This within-user variation is the cornerstone of my
empirical strategy (Section 5). About 23 species are recorded on the average trip, while
traveling a wide area. eBirders cover 20% of district area in a typical month and over half
of district area over the study period. Wide spatial coverage helps ensure that eBird data
reflects the local species pool10.

Overall, my sample selection procedure yields a replicable biodiversity data product
that is a contribution in itself, especially for empirical environmental economists. Data
on observer effort enables researchers to separate species observations from the obser-
vation process. Trip coordinates enable aggregation of species diversity to any spatial
unit. Lastly, several ground-truthing studies show that eBird data strongly correlates
with structured bird census data (Horns et al., 2018; Munson et al., 2010; Callaghan et al.,
2018), suggesting that eBird is a reasonable guide to local biodiversity. Section 4 presents
stylized facts about the analysis sample and how it can be used for causal inference.

8Dataset of taxa names of IUCN status obtained from: https://datazone.birdlife.org/home.
9Physiological details of Indian birds obtained from State of India’s Birds database.

10It is more important that eBirders collect representative data than themselves be representative of the
population. Nevertheless, in the absence of demographic data, I provide a detailed characterization of
users in Appendix S5 by matching their approximate home locations to the Demographic and Health (DHS)
survey. Perhaps unsurprisingly, users are from more urban and better-off places than the typical Indian.
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3.3 Covariates

Environmental Covariates The first set of covariates are environmental and include
temperature and rainfall. Accounting for weather is important since it affects species
detection. Temperature (◦C) is from the ERA5 product on a 0.125◦ grid (Hoffmann et al.,
2019). Rainfall (mm) is from the NASA GPM Level 3 product on a 0.1◦ grid (Huffman
et al., 2019). I extract means over cells within a district, weighted by cell overlap fraction.

Observer Effort The second set of covariates captures effort and includes: trip distance,
duration, experience, protocol, group size, and spatial coverage. Duration (minutes)
and distance (km) are recorded by eBird. Experience is the cumulative number of trips
recorded by each user at the end of every month. Protocol equals one if the user is mov-
ing and zero if stationary. Group size is the birdwatching party size. Spatial coverage is
the fraction of 10km grid cells in a district traversed by users. This accounts for projects
opening inaccessible forest patches (e.g., through supply roads), which may draw users
to new sites. It also enables me to characterize representativity of eBird species lists (Fact
4, Section 4). All effort variables are aggregated to their means during aggregation and
directly included as control variables in the main specification11.

Economic Spillovers The third set of covariates captures broader economic activity in-
duced by project-building. This helps disentangle the effect of infrastructure per se from
changes to market structure prompted by the projects. Such spillovers should be minimal
in any case since projects are unlikely to complete construction during the study period
(Section 2). Even otherwise, market spillovers “help” the research design as they reflect
alternate channels threatening species diversity, including noise and air pollution.

In the absence of district GDP data, I control for nightlight radiance to capture broader
economic activity (Henderson et al., 2012). Data are obtained from the VIIRS satellite
(Elvidge et al., 2017). Note that nighlights are a “bad control” if projects themselves affect
nightlights, in which case both variables partially subsume the treatment. To check this,
Table S2 regresses log nightlights on project permits at the district-year level and reveals
near-zero point estimates and no correlation even up to two years later. This suggests that
nightlights can be used to control for broader economic changes. I also control for state
fixed effects in case projects affect connected industries in the state (Section 5.1).

11Spatial coverage and experience are not transformed since they are already at the user-district-
yearmonth, and user-yearmonth level, respectively. Since protocol is a trip-level indicator, it transforms
into the proportion of stationary trips after data aggregation.
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Table 2: Correlation between approved and actual deforestation

Log Forest Cover Log Forest Cover Forest Share

(1) (2) (3)

Log(Infrastructure+1) -0.024∗∗ -0.024∗∗

(0.010) (0.010)

Infrastructure Encroachment -0.365∗∗∗

(share of forest) (0.086)

Nightlights No Yes Yes

District FEs X X X
State × Year FEs X X X
Observations 3822 3822 3822
R2 0.988 0.988 0.993

Note: ∗ p < .1, ∗∗ p < .05, ∗∗∗ p <.01. Data are aggregated district-yearly. In columns 1 and 2, the outcome
is log forest cover (km2) and the explanatory variable is cumulative approved deforestation (km2). A value
of one is added before log-transforming infrastructure to account for zero values. In column 3, the outcome
is forest cover divided by district land area, and the explanatory variable is share of forest encroached by
infrastructure. Standard errors clustered by district.

4 Empirical Patterns

I next present four stylized facts that make the data ideal for studying the infrastructure-
biodiversity tradeoff. The first verifies that project approvals trigger real deforestation.
The second and third illustrate shortcomings and remedies for using citizen science for
causal inference. The fourth fact is that users are very mobile, providing spatial variation
for identification. These facts motivate the empirical strategy in Section 5.

4.1 Fact 1: Approved deforestation triggers actual deforestation

Throughout the paper, authorized deforestation is assumed to mean actual deforestation.
I test this using remotely-sensed validation data with the following equation:

ForestCoverdst = α + β · In f rastructuredst + ΓX′dst + γd + θst + εdst (1)

where d indexes districts and t indexes years. In f rastructure is cumulative km2 of ap-
proved deforestation and ForestCover is actual forest cover obtained from the VCF satel-
lite (Townshend et al., 2017). To harmonize the scale, I convert forest cover percentages
to km212. X′dst is a control for nightlight intensity, which disentangles infrastructure from

12I convert to km2 by multiplying cell values (% forest cover) by pixel area and summing over districts.
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other drivers of forest loss. γd and θst are district and state-year fixed effects. β < 0 tests
whether approved deforestation translates into actual deforestation.

Forest cover declines as districts approve more projects (Table 2). Column 1 specifies
a log scale since In f rastructuredst aggregates over differently sized projects in a district13.
The point estimate implies that a 1% increase in approved deforestation leads to a 0.02%
decline in observed forest cover, and is robust to controlling for nightlights (column 2).
Column 3 specifies a linear relationship using forest share of land area as the outcome and
share of forest encroached by infrastructure as the explanatory variable. The coefficient
remains negative and statistically significant. The point estimate implies that 1pp. more
approved deforestation leads to a 0.37pp. decline in forest cover. All three point estimates
are reasonable since infrastructure is only one source of total deforestation.

4.2 Fact 2: eBird usage is higher in winter and in more biodiverse places

Although citizen science data is revolutionizing biodiversity monitoring, loose restric-
tions on when, where, and by whom data are collected yields more endogeneity than
most administrative datasets. First, there is stark seasonality arising from the ability to
record trips at any time. Figure 2A shows sharp peaks in collective species richness (left
axis) in winter when Siberian birds migrate to India, and a trough during lulls in activity
(right axis) during monsoons. I address seasonality with state-month fixed effects so that
time-invariant differences across months, such as seasonal species fluctuations, are elimi-
nated. This also assumes migratory patterns vary regionally. In a robustness check, I test
whether seasonality materializes at the sub-state level.

A second source of endogeneity in citizen science data is site selection. The ability
to record species from anywhere can trigger heightened activity in certain districts. Fig-
ure 2B shows that eBird users record more trips in districts with higher “true” species di-
versity, measured by intersecting historic bird range maps (BirdLife International, 2018).
Species checklists will be longer in these districts since the species pool is larger. Previous
studies account for this with a variety of fixed landscape covariates (Kelling et al., 2015),
whereas I use district fixed effects to rule out site selection more confidently.

13Small encroachments are unlikely to be captured by the satellite, introducing noise at low levels of
In f rastructure. Also, if small projects are sited in highly forested areas (and overlooked by the satellite),
then β is upward biased. A log scale helps avoid these problems since values represent exponential changes
in approved deforestation, which are more likely to be captured by satellite.
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Figure 2: Biases in Citizen Science
Note: The left y-axis of Panel A shows total species richness across all users. The right y-axis shows total
number of trips. Panel B shows mean number of trips per user-month in three quantiles of true species
richness, obtained from historic range maps. In Panel C, red circles plot mean residuals per user from
regressing species richness on user, district, state-month, and year fixed effects. Blue triangles control for
experience. Black squares partial out user-year, district, and state-month fixed effects.

4.3 Fact 3: Learning is a crucial source of bias in citizen science

Besides seasonality and site selection, another bias arises from pooling users with differ-
ent abilities (Fitzpatrick et al., 2009). To address this, previous studies construct a fixed
ability score for eBird users based on random effects (Kelling et al., 2015). Instead, I com-
pare species richness within the same user, making an ability score superfluous.

Circles in Figure 2C show species richness residualized on user, state-month, and dis-
trict fixed effects. An upward trend remains, evidence that users’ ability may improve
over time. Triangles add a control for experience, which increments with each trip. The
“learning curve” flattens, but is not fully absorbed. This suggests that learning is also
driven by longer-term unobservables. For example, a novice may detect the same com-
mon species month-to-month, gradually listing rarer species after learning their songs.

My solution hinges on restricting variation to within-user-by-year. This removes user-
specific annual trends, including accumulated trips, months per year of activity, and
other long-term learning indicators. It also allows for differential learning curves be-
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tween users. Partialling out user-by-year fixed effects mechanically flattens the trend
(black line), implying that residual variation is stripped of the learning bias. This is the
variation that I use to estimate infrastructure-biodiversity tradeoff in Section 5.

4.4 Fact 4: Users are highly mobile across space and time

One concern with high-dimensional fixed effects is that they absorb a lot of identifying
variation. District and state-month fixed effects leave monthly within-state deviations
from district means, e.g. the amount by which a district in Kerala is more species diverse
than normal in a month compared to its neighbour. User fixed effects remove additional
variation by restricting district comparisons to those traversed by individual users. There-
fore, identification hinges on users being sufficiently mobile. Table S1 showed that users
visit multiple districts and states over the study period. Figure S2 plots spatial variation
within the year—the same variation used in the main analysis. About 30% of users visit
multiple states and districts, and over 40% are are active in multiple months of the year.

Table S3 presents the identifying variation more formally. It summarizes regressions
of species richness on different fixed effects and reports residual variation (column 1)
and the standard deviation of residual variation (column 2). One-fifth of the variation in
species richness is explained by seasonality and site choice (second row). About half is
explained when user heterogeneity and learning are also accounted for (third and fourth
row). Overall, substantial identifying variation remains—driven by users traveling across
space and time—after removing important biases in citizen science data. The residual
standard deviation is 12-13 species in the most saturated specifications, providing a wide
margin for identification. These findings underscore the richness of crowd-sourced data.

5 Empirical Strategy

The main analysis leverages panel fixed effects. Development projects fragment district
forests, and eBird users venture to these districts to record birds. I compare species di-
versity within users’ trips as they travel around. This strategy exploits rich cross-sectional
and time-series variation, giving rise to plausible control groups within users: their recorded
species diversity in districts and time periods with different levels of encroachment.
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5.1 Main Specification

I estimate the following equation to reveal the infrastructure-biodiversity tradeoff:

SRidsym = α + β1 · In f rastructuredsym + ΓX′idsym + φiy + γd + θsm + εidsym (2)

where SRidsym is mean species richness observed by user i across their trips in district
d of state s during year y and month m. As such, SRidsym is a continuous measure repre-
senting an average of underlying trip-level species counts. I also estimate specifications
where the outcome is the frequency that user i observes common, vulnerable, and endan-
gered species14. In f rastructuredsym is cumulative area of infrastructure encroachments.
Xidsym is a vector of weather and effort covariates described in Section 3. It includes spatial
coverage, which accounts for projects opening up inaccessible parts of the forest. It also
includes nightlights, which controls for market spillovers in the district. User-year fixed
effects, φiy, absorb cross-user differences in ability and account for individual-specific
learning. District fixed effects, γd, absorb mean checklist length and other other fixed
district attributes. State-by-month fixed effects, θsm, control for state-specific seasonality.

Identifying Variation φiy require that user i visit at least one district in two months of
the year to qualify for the estimation sample. In this case, only time variation is exploited.
Users active for just one month are also included as long as they visit > 2 districts, in
which case identification is from cross-sectional comparisons. In general, users are more
active than these limiting cases (Figure S2) and both temporal and spatial variation across
user i’s trips to different districts over months of the year are used for identification.

Conditional on covariates and fixed effects, β1 identifies the impact of infrastructure
on species diversity. It captures the impact of infrastructure-driven forest loss, not gen-
eral equilibrium effects of infrastructure, because nightlights are a covariate and because
projects are unlikely to complete construction during the study period. If species relocate
within the district, then they may be spotted by user i on another trip or by other users,
leaving species diversity unchanged15. β1 < 0 is thus even more striking as it implies the
species and its ecosystem services are displaced from the district altogether.

OLS Estimator β1 is estimated in a TWFE setup via OLS. Callaway et al. (2024) outline
three key assumptions for OLS to recover causal treatment effects in this setting. First,

14Poisson regression is used for estimation in specifications where the outcome is a count variable.
15The fact that 10 users are active in the typical district-month, together covering 20% of district area

(Table S1), helps ensure that the local species pool is reported, even if one user misses a species.
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treatment must be continuous, which fits my setting since In f rastructuredsym is measured
in km2. Second, units must not anticipate treatment, an assumption supported below with
an event study (Figure 3). The third assumption is strong parallel trends: the marginal
change in species richness among users visiting a district with a given infrastructure level
is the change that all districts would experience if they had that amount of infrastruc-
ture. Otherwise, the OLS estimate contains selection bias. While this is fundamentally
untestable, I lean on the fact that user fixed effects exploit within-user comparisons across
districts with different treatment intensities. In Section 5.3.3, I demonstrate that users’ lo-
cation choices are uncorrelated with infrastructure, which minimizes selection bias since
the treatment is plausibly as-if randomly distributed across potential outcomes.

Clustering Standard errors are clustered by biome in the main analysis. From an eco-
logical view, this is the most appropriate cluster because biomes delineate biological com-
munities with shared eco-climatic characteristics that are unobserved in my model. These
characteristics may generate arbitrary correlation of εidsym within a biome. Maps of In-
dia’s 12 biomes are obtained from the Nature Conservancy16 (Figure S3). For districts
spanned by many biomes, I select the one with the largest overlapping area as the cluster.

From an econometric view, clustering by district is more appropriate since deforesta-
tion varies at the district level. Although unobserved ecological components of biodiver-
sity are unlikely to adhere to political boundaries, I report estimates clustered by district
in the robustness checks. I also cluster by state and report Conley standard errors as a
compromise between biome and district clustering.

5.2 Additional Specifications

I decompose In f rastructuredysm in Equation 2 into six separate categories: electricity,
transportation, mining, resettlement, irrigation, and other. This not only reveals partic-
ularly harmful categories, but also those with negligible, or even positive, impacts on
species diversity. I estimate the following specification:

SRidsym = α +
6

∑
k=1

β1k · In f rastructurekdsym + ΓX′idsym + φiy + γd + θsm + εidsym (3)

where the term under summation is cumulative forest area diverted for projects of
category k. Remaining terms and subscripts are defined as in Equation 2. β1k measures

16I use the “Terrestrial Ecoregion” files accessed from https://worldmap.maps.arcgis.com
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Figure 3: Event Study Results
Note: Dark green circles are event study coefficients (Equation 5). The outcome is log of mean species
richness observed by users in a district-month. x-axis is number of months since project approval. The
regression includes project, state-month, and year fixed effects, linear district time trends, as well as district-
level controls for: temperature, rainfall, traveling trips, log nightlights, log duration, log distance, log group
size, and log spatial coverage. Standard errors clustered by biome.

the impact of infrastructure category k on species richness. I use the same approach to
estimate impacts by project ownership (public, private) and shape (linear/nonlinear).

Additionally, I estimate heterogeneity by initial forest cover as follows:

SRidsym = α + β1 · In f rastructuredsym + β2 · (In f rastructuredsym · EQd) (4)

+
6

∑
k=1

β3k(In f rastructuredsym · Sharekd) + ΓX′idsym + φiy + γd + θsm + εidsym

where EQd is a fixed measure of initial ecosystem quality in district d. It is measured
with 2014 forest cover and, in a robustness check, with bird diversity from range maps
(Section 4.2). Since certain project categories may dominate particular landscapes (e.g.,
mines in intact forests), I control for the interaction of infrastructure with the baseline
share of projects in category k to disentangle area effects from category effects. β2 reveals
whether the infrastructure-biodiversity tradeoff is accentuated or muted in more pristine
landscapes, independent of project type.
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5.3 Identifying Assumptions

5.3.1 Assumption I: Parallel Trends

The parallel trends assumption states that, in the absence of treatment, species diversity in
districts that received an additional km2 of projects must be on the same outcome path as
districts that never received the increment. Since treatment is continuous and comprises
multiple project approvals (events) in a district, I unravel the data into a stacked project-
district-month panel and estimate the following event study:

Log(SRdsym) =
24

∑
τ=−9

β1τ · 1[t− epdsym = τ] + ΓX′dsym + y · µd + αp + θsm + ηy + εpdsym (5)

where p indexes projects, d indexes districts, s indexes states, and ym indexes year-
months. The outcome is mean species richness observed by users in a district-year-month.
epdsym is the date that project p was approved in district d. τ = −1 is the reference period.
X′dsym are the same covariates from Equation 2 at the district level, and y · µd are linear
district time trends. Each β1τ captures mean species richness τ months relative to the
project approval date. Lack of pre-trends are indicated by β1τ = 0 ∀ τ < 0. Standard
errors are clustered by biome for the same reason as the main specification (Section 5.1).

Figure 3 displays estimates of Equation 5. Coefficients fluctuate tightly around zero
during the pre-period. Yet two months after approval, coefficients turn sharply negative
and continue downward. The lack of pre-trends support the parallel trends assumption
and suggest that projects are not selectively sited. It also supports the no-anticipation
assumption, which requires that users do not alter their behaviour prior to the treatment.

While parallel trends help rule out endogenous project placement, omitted variables
bias remains a threat to validity since the research design relies on fixed effects for iden-
tification. Appendix S4.1 provides additional evidence to minimize this concern; neither
bureaucratic nor geographic characteristics consistently predict the likelihood or timing
of project approval, building confidence that the timing of permit allocation is plausibly
random (Table S16). Appendix S4.2 shows that infrastructure placement does not appear
to be influenced by lagged bird diversity (Table S17), helping rule out reverse causality.

5.3.2 Assumption II: No Spatial Spillovers

β1 in Equation 2 is unbiased assuming no interference between units, known as the stable-
unit treatment value assumption (SUTVA) (Imbens and Rubin, 2015). This requires that
species richness in district d depend on infrastructure in district d only. However, SUTVA
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is violated in my context since habitat loss triggers species dispersal to other districts.
To account for spatial spillovers, I add a control for the “spatial lag of X” (Elhorst and

Vega, 2015), SLXB
dsym = ∑j∈ΩB

In f rastructurejsym
distancedj

, where distancedj is the distance between
district d and j. This term measures spatially-weighted development in other districts
j 6= d, and has two important features. First, inverse distance weights assume that birds
relocate more toward nearby districts. Second, birds are assumed to disperse within the
biome, B, denoted by ΩB, the set of districts j in the same biome as d. I also test robustness
to spillovers within arbitrary, potentially biome-spanning, circles of radii up to 500km.

After including SLXB
dsym in Equation 2, its coefficient captures changes to species di-

versity in district d when other districts in the biome become relatively more fragmented.
Conditional on this, β1 is purged of spillover bias.

5.3.3 Assumption III: No Sorting of eBird Users Across or Within Districts

Another threat to identification in Equations 2-4 is endogenous user sorting. If project
development incentivizes users to birdwatch in more biodiverse areas, then β1 is biased
upwards. I test for cross-district sorting with the following specification:

log(Usersdsym) = α+ β1 In f rastructuredsym + β2SLXN
dsym + ΓX′dsym +γd + θsm + µy + εdsym

(6)
where Usersdsym is the number of users active in district d during year-month ym. These
are the same sample of users that identified species loss in Equation 2. The third term is
the previously defined spatial lag, except Ω spans the nation, N. This enables users to sort
anywhere in India following project construction in district d, but with lower probability
toward further away destinations. I also test specifications that restrict sorting to 100km,
200km, and 500km of district d. Remaining terms are as in Equation 2. β2 > 0 implies
that users sort into district d when other districts become relatively more fragmented.

I test for within-district sorting by estimating Equation 6 with spatial coverage as the
outcome and omitting the spatial lag. Spatial coverage is the percent of district grid cells
“birdwatched” in a given time period. If infrastructure pushes users into new parts of
the district, then spatial coverage will increase and β1 > 0. As discussed next, I find no
evidence of cross- or within-district sorting, improving confidence in the TWFE design.
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Figure 4: Estimates of the Infrastructure-Biodiversity Tradeoff in India
Note: The outcome is mean species richness across users’ trips in a district-month. Panel A shows coef-
ficients on cumulative area of infrastructure encroachments in a district-month. Specification (1) includes
user, district, state-month, and year fixed effects. Specification (2) includes user-by-year, district, and state-
month fixed effects. Specification (3) controls for spatial spillovers within the biome (Sec. 5.3.2). Panel B is
a single regression with deforestation decomposed into project categories. Shaded bars denote confidence
intervals. All regressions control for: temperature, rainfall, traveling trips, log nightlights, log duration,
log distance, log experience, log group size, and log spatial coverage. Standard errors clustered by biome.

6 Main Results

This section presents evidence on the impact of infrastructure on biodiversity. Species di-
versity is significantly threatened by infrastructure, driven by lower abundance of com-
mon and vulnerable species. Resettlement, transport, irrigation, and mining projects are
particularly harmful. Lastly, species diversity does not rebound in the medium run.

6.1 Estimates of the Infrastructure-Biodiversity Tradeoff

Main Estimates Figure 4A illustrates the infrastructure-biodiversity tradeoff. Full tab-
ular estimates are in Table S4. Specifications (1) and (2) of the figure estimate Equation 2
with and without the learning curve, respectively. The main coefficient, β1, is negative in
both specifications, indicating that infrastructure intrusions reduce local species diversity.
The upward learning curve counteracts species declines in specification (1), yielding an
attenuated coefficient. Removing this counterbalancing pressure with user-by-year fixed
effects in specification (2) yields a steep decline in species richness.

An additional km2 of infrastructure-driven deforestation in a district causes users to
observe 0.12 fewer species, equivalent to 0.5% of the average bird list. To put this in per-
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spective, eBird users observed 0.8 fewer species at the end of the study period compared
to the start. The average district had 1.14 km2 of forest newly displaced by infrastructure
during this time, implying a loss of 1.14 × −0.12 = 0.14 species. Thus, infrastructure
accounted for 0.14/0.80 ≈ 17.5% of species loss across India between 2015-2020.

Sensitivity: Spatial Spillovers Biases from spatial spillovers are minimal. Specifica-
tion (3) of Figure 4A shows that species loss is unchanged when accounting for species
displacement within the biome. Conditional on the direct effect, the spillover coefficient
is positive but insignificant (Table S4, column 3). Table S5 tests robustness to allowing
spillovers to materialize over different distances. In all cases, estimates of species loss
remain stable, significant, and virtually equivalent to the main estimate. Spillovers sim-
ilarly remain positive but noisy. This increases confidence that the lack of spillovers is
pervasive, not an artifact of the within-biome assumption. These results do not mean
species do not relocate following habitat loss. It means they do so in a way that is uncor-
related with local infrastructure development.

Sensitivity: Controlling for Observables Columns 4-6 of Table S4 probe sensitivity by
successively adding controls. When observer behaviour and nightlights are removed (col-
umn 4), the coefficient remains negative but loses precision. When behaviour is added
back, the tradeoff reappears (column 5), suggesting that behaviour is a key source of bias.
The coefficient is equivalent to the main specification, which also controls for nightlights
(column 3). Equal point estimates with or without nightlights implies that species loss is
driven by habitat loss, not economic spillovers. This is unsurprising given that projects
remain mostly incomplete during the study period (Section 2).

Column 6 adds diversion of non-forest land for infrastructure as a covariate. It has
no impact on species diversity, underscoring habitat loss as the key mechanism driving
species loss as opposed to other infrastructure-driven disturbances such as pollution. Al-
though the impact of non-forest land diversion is statistically insignificant, we cannot
reject the null hypothesis that its magnitude equals the deforestation effect.

More robustness tests are in Section 6.6. Among many others, these include: control-
ling for alternative forms of seasonality, accounting for a changing user base, and alterna-
tive species diversity metrics. I also investigate spatial correlation more systematically.

Ruling out Sorting Across and Within Districts Estimates do not appear to be driven
by cross-district or within-district sorting. Table S6 tests for cross-district sorting by esti-
mating Equation 6. Infrastructure measures are standardized for comparability between
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direct and spillover effects. Users do not sort into district d when other districts j within
100km become relatively more fragmented (column 1, second row). Neither does devel-
opment in d push users elsewhere (first row). Lack of spillovers are visible under distance
cutoffs up to 500km (columns 2-3), suggesting that users are highly mobile (Fact 4, Sec-
tion 4.4), but not because of infrastructure development.

Column 4 tests for within-district sorting by dropping the spatial lag term and using
the percent of “birdwatched” grid cells in a district as the outcome in Equation 6. The
coefficient is negative and insignificant17 , suggesting that eBird users continue visiting
the same birdwatching locations as districts undergo development. This implies that they
rarely birdwatch near construction sites, although I am unable to verify this since exact
project coordinates are unavailable. Taken together, the lack of sorting across and within
districts supports causal interpretation of the main estimates.

6.2 Estimates by Project Category

Figure 4B presents estimates of Equation 3. Coefficients describe the impact of a marginal
encroachment by projects of that category, conditional on that by other categories. Five
out of six categories trigger species diversity loss. Four of them—resettlement, transport,
irrigation, and mining—do so with statistical precision.

Resettlements threaten species the most. An example is the diversion of 2.85 km2 of
forest in Madhya Pradesh for relocating a village previously located in a nearby Tiger
Reserve18. The coefficient is largest likely because resettlements comprises a package
of projects, including access roads and shelters, such that the magnitude reflects a sum
of coefficients on other categories. Another reason may be that it is the only category
directly linked to human activity. If one km2 of habitat loss for building resettlements is
associated with spillover economic activity not captured by nightlights, then it will result
in more species loss than one km2 of other projects. Without project GPS coordinates or
details on what is inside each resettlement, I am unable to formally test these hypotheses.

The negative impact of “other” projects is imprecise. These are the smallest projects
on average, but feature a standard deviation 17 times greater than the mean, the largest
ratio of any category (Table 1). When aggregated to the district, a marginal encroachment
thus comprises many underlying patch sizes. Coefficient magnitude is likely driven by
large projects, where marginal encroachments comprise a single patch, and the noise by
smaller projects, each too small to affect species diversity with precision. The same logic

17The coefficient is also insignificant when the outcome is the convex hull area around user’s trips.
18The project was approved in April 2017 and includes housing, playgrounds, and roads. Site report:

http://forestsclearance.nic.in/writereaddata/SIR/06022017561SBScan_02-06-2017_1501.pdf.
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may explain the noisy impact of electricity projects, which have the second highest noise-
to-signal ratio. The positive coefficient may be explained by the large number of hydro-
electric dams, which create reservoirs that may attract previously unseen waterbirds.

Although mining appears to threaten species minimally, the coefficient is likely atten-
uated since mines are often sited in remote areas where few eBird users travel. Half of
sample mines are in Odisha, Madhya Pradesh, and Chhattisgarh, with 27% in Odisha
alone. The median number of users and trips in Odishi mining districts is under half
of the national median. The few users who travel there may be a selected sample that
undercount the species pool (Section 3.2).

Table S7 probes sensitivity of the estimates and further investigates mining effects.
Similar to main estimates, category-wise estimates materialize when observer behaviour
is accounted for (column 2) and remain stable when controlling for economic activity
(column 3). To test the conjecture about the small mining effect, I restrict the sample to
districts with high eBird activity, measured as above-median numbers of users recording
above-median trips per user. If the bias is mining-specific, only the mining coefficient
should be accentuated. Indeed, mining projects are twice as harmful in the high-activity
sample and other coefficients remain virtually unchanged (column 4). This implies that
non-mining projects are sited in places with sufficient eBird activity to begin with.

Appendix S4.3 present additional results by project ownership and shape (Table S18).

6.3 Estimates by Species Characteristics

Having established that infrastructure drives species loss, I next investigate which species
are under threat. Table 3 shows estimates of Equation 2 with the outcome measured as
counts of common, vulnerable, and endangered species19. Since outcomes are counts,
coefficients should be interpreted in terms of abundance and not diversity.

Low-concern and vulnerable species are under most threat from infrastructure expan-
sion. The coefficient in columns 1 and 3, where outcomes are in levels, is negative and
significant. Magnitudes relative to the mean imply that an additional unit of infrastruc-
ture causes users to observe 1% fewer low-concern and vulnerable species. Since the out-
come is a count, columns 2, 4 and 6 report Poisson estimates. I use the pseudo-maximum
likelihood estimator to adjust standard errors (Wooldridge, 1999). Again, lower species
abundance is detected for low-concern and vulnerable species. Since observing endan-
gered species is rare, there is insufficient variation to detect effects in columns 5 and 6.

19IUCN lists species as: least concern, near threatened, vulnerable, endangered, and critically endan-
gered. I combine least concern and near threatened as well as endangered and critically endangered.
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Table 3: Estimates by IUCN Threat Status

Least Concern Vulnerable Endangered

(1) (2) (3) (4) (5) (6)
Level Poisson Level Poisson Level Poisson

Infrastructure (km2) -0.961∗∗∗ -0.012∗∗∗ -0.007∗ -0.009∗∗∗ 0.002 0.006
(0.280) (0.003) (0.004) (0.003) (0.002) (0.008)

Controls Yes Yes Yes Yes Yes Yes

Outcome Mean 90.541 90.545 0.589 0.741 0.167 0.378
User x Year FEs X X X X X X
District FEs X X X X X X
State ×Month FEs X X X X X X
Observations 161896 161889 161896 128511 161896 71284
R2 0.517 0.395 0.377

Note: ∗ p < .1, ∗∗ p < .05, ∗∗∗ p <.01. The outcome is a frequency count for the number of times a user
observed a species of each type during a district-year-month. Forest infrastructure is cumulative area of in-
frastructure encroachments in a district-month. Poisson regressions are estimated with a pseudo-maximum
likelihood estimator. All specifications include user-year, district, and state-month fixed effects as well as
controls for temperature, rainfall, traveling trips, log nightlights, log duration, log distance, log experience,
log group size, and log spatial coverage. Standard errors clustered by biome.

Appendix S4.4 presents estimates by habitat specialization and migratory status. Per-
haps unsurprisingly, forest birds are the most sensitive to infrastructure encroachment
into forests, whereas there is no impact on wetland birds (Table S19). Non-migrant species
are also especially threatened by development projects, potentially reflecting their inabil-
ity to adapt through relocation. These results suggest that the overall decline in species
diversity in Figure 4A is driven by lower abundance of common and vulnerable species,
forest habitat specialists, and resident species.

6.4 Heterogeneity: Species are More Resilient in Intact Forests

I next investigate impacts by baseline ecosystem quality, which has implications for whether
conservation should target intact or fragmented landscapes. Table 4 presents estimates of
Equation 4. Columns describe treatment heterogeneity using two measures of ecosystem
quality. Both are standardized so that a one-unit change can be compared.

Species are more resilient to infrastructure development in pristine areas. The ad-
verse impact of infrastructure on species diversity is halved in districts with one standard
deviation higher initial forest cover20 (column 1). To account for potential selection of

20Forest cover (% of a pixel) is from the VCF satellite product on a 250m grid (Townshend et al., 2017)
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Table 4: Treatment Effects by Baseline Forest Intactness

(1) (2) (3) (4)

Infrastructure (km2) -0.130∗∗∗ -0.107∗∗∗ -0.133∗∗∗ -0.108∗∗∗

(0.019) (0.028) (0.024) (0.032)

Infrastructure (km2) × 0.065∗ 0.056
Baseline Forest Cover (0.030) (0.032)

Infrastructure (km2) × 0.052∗∗ 0.046∗∗

Baseline Species Richness (0.020) (0.019)

Infrastructure × Category Shares No Yes No Yes

Controls Yes Yes Yes Yes

User x Year FEs X X X X
District FEs X X X X
State ×Month FEs X X X X
Observations 161896 161896 161896 161896
R2 0.690 0.690 0.690 0.690

Note: ∗ p < .1, ∗∗ p < .05, ∗∗∗ p <.01. The outcome is mean species richness across users’ trips in a district-
month. In f rastructure is cumulative area of infrastructure in a district-month. Baseline district forest cover
is for in 2014. Baseline species richness is measured at the district level by overlapping species range maps.
All specifications include user-year, district, and state-month fixed effects as well as controls for tempera-
ture, rainfall, traveling trips, log nightlights, log duration, log distance, log experience, log group size, and
log spatial coverage. Columns 2 and 4 additionally include six interactions terms of infrastructure with the
baseline district share of projects in each category. Standard errors clustered by biome.

projects into certain habitats (e.g., mines disproportionately sited in pristine forests), col-
umn 2 controls for the interaction of infrastructure with the baseline project category dis-
tribution. Results are very similar, although precision of the interaction slightly declines
(p=0.108). Remaining columns test sensitivity to measuring baseline ecosystem quality
with species range maps. The tradeoff reduces by a similar amount (column 3) and is
robust to controlling for project category (column 4).

In Appendix S4.5, I test heterogeneity by districts’ importance for conserving bird
habitat, a measured developed by BirdLife International. Species are more resilient in
districts’ designated as Important Bird Areas (Table S20), in line with the previous results.
The degree to which species loss is muted in these districts is also very similar.

Overall, since species loss is largest when baseline ecosystem quality is low, these re-
sults support stronger protections for degraded landscapes. The findings also corroborate
existing theory from ecology (Hanski, 1998).
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Figure 5: Cumulative Dynamic Lag Results
Note: “Baseline” repeats the main result with user-year, district, and state-month fixed effects. “Sum L0-
L1” adds the first lag of forest diversion to the main specification and reports the sum of coefficients on the
first lag and baseline effect. “Sum L0-L3” sums up to the third lag, and so on. Shaded bars are confidence
intervals. All regressions control for: temperature, rainfall, traveling trips, log nightlights, log duration, log
distance, log experience, log group size, and log spatial coverage. Standard errors clustered by biome.

6.5 Dynamics: Species Diversity Loss is Persistent in the Medium Run

My estimates thus far reflect how species respond to habitat loss within the month. This
overlooks lagged effects, either reflecting a delay for species diversity to equilibrate (Odum,
1969), or, a delay between project approval and forest clearing. To separate these chan-
nels, I investigate dynamics up to two years. Since Table 2 showed that logging is ob-
served within the year of project approval, lagged effects within the year may be driven
by driven by either channel, whereas lags beyond one year likely reflect delayed species
responses since deforestation is likely to have already occurred by then.

Figure 5 presents estimates of Equation 2 with lags up to two years. White diamonds
are the sum of baseline and lagged coefficients, which measures net impacts of infrastruc-
ture several periods later. Species declines are triggered in the month of project approval
and persist thereafter. The cumulative impact three months later (“Sum L0-L3”) is nearly
equal to the baseline effect, with stable point estimates up to six months. A slight lagged
effect is also observed after one year and persists through the second year21. However,
we cannot interpret this as evidence of delayed species responses since confidence inter-
vals overlap point estimates across all periods. We therefore cannot reject the null that
second-year coefficients are the same as the first year.

The main takeaway is that species loss does not recover in the medium run. This has

21Persistence even extends through the 3rd year (not shown), although data loss lowers precision.
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two implications. First, it provides further evidence that my estimates capture responses
to permanent habitat loss. If species were responding to temporary disturbances, such
as noise or air pollution, then Figure 5 would have featured a U-shape as species return
after the disturbance dies down. Second, the dynamic results also highlight the ineffec-
tiveness of compensatory afforestation requirements, would have also been indicated by
a U-shape. However, as described in Section 2, tree-planting rarely takes place, posing
minimal threat to the research design.

6.6 Additional Robustness Checks

This section shows robustness to different estimation samples, diversity metrics, and re-
moving outliers. The next section shows robustness to an alternative research design.

Sample Restrictions Table S8 columns 1-4 show estimates from alternative samples.
Whereas the main specification accounts for within-user behaviour changes, it does not
account for a changing user base. Column 1 thus fixes the sample to only those users who
signed up in 2015 (N=2,938 users). The estimate is very similar, suggesting that users who
joined later are similar to veteran users.

Column 2 drops users’ home districts (see Section S5 for computation), which tests
whether they display different recording practices at home and away. The point estimate
is very similar, suggesting that they do not. Column 3 drops districts with low eBird
activity, measured as districts with below-median number of users who record below-
median number of trips per user. Again, the coefficient is remarkably similar, suggesting
that my estimates are not biased by peculiarities in places with sparse eBird usage22.

Lastly, column 4 drops 2020, the year COVID-19 swept the globe. During India’s lock-
down, “balcony birdwatching” was popularized and eBird sign-ups quadrupled (Mad-
hok and Gulati, 2022). Estimates remain stable, which is unsurprising since year fixed
effects absorb time shocks and the protocol covariate captures the shift indoors.

Removing Outliers I transform the sample in two ways to remove outliers. In column 5,
I drop India’s top three “mega-projects”: 1) the world’s largest lift irrigation23 project, lo-
cated in Telangana and requiring 3,168 ha. of deforestation, 2) a 4,000 MW coal plant, also
in Telangana, that requires 4,334 ha. of deforestation, and 3) the world’s largest concrete
dam, located in Arunachal Pradesh, that requires 5,056 ha. of deforestation. Coefficient

22Similarly, point estimates are robust to splitting the sample by North/South, although precision is lower
in the North since data are sparser (Fig. 1C).

23Lift irrigation is where water is transported by pumps rather than by exploiting natural flow.
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size doubles but falls within the lower bound of the baseline estimate. The larger mag-
nitude may be from dropping the two irrigation mega-projects, which may have created
water habitat that attract new species. Dropping these releases this offsetting pressure on
the coefficient, leading to greater species loss.

In column 6, instead of dropping mega-projects, I apply the inverse hyperbolic sine
transformation24 to In f rastructuredsym (Bellemare and Wichman, 2020). The coefficient
implies that a 1% increase in infrastructure leads to a loss of 0.006 species. For com-
parison, 1% of In f rastructuredysm evaluated at the mean is 0.0114 km2. Applying this to
the baseline coefficient yields 0.0114×−0.12 ≈ −0.0014 species. The discrepancy likely
arises from different functional assumptions: IHS assumes diminishing marginal effects
of habitat loss whereas the baseline does not.

Alternative Diversity Measures Species richness has been criticized for its simplicity.
Somewhere with one pigeon and 99 crows, and another with fifty of each, both have a
richness of two despite the latter being more even. I compute two metrics that account
for evenness:

SHj = −
S

∑
s=1

psjln(psj) SIj = 1/
S

∑
s=1

p2
sj

where psj is the proportion of all observations on eBird checklist j belonging to species
s. The Shannon Index (left) increases in diversity. The Simpson Index (right) reflects
the probability that two randomly drawn birds belong to the same species (Magurran,
2013). I use 1− SIj so that it also increases in diversity. One issue is that eBird counts are
imprecise given difficulties recording quickly moving flocks. About 90% of counts in my
sample are approximated to the nearest tenth, and 10% of checklists have missing counts.

Columns 7 and 8 show an infrastructure-biodiversity tradeoff using these alternative
measures, but coefficients are imprecise as expected. Infrastructure impacts on Shannon
and Simpson diversity are 1.7% and 4.0% of their means, respectively.

Regression Weights Column 9 adds regression weights equal to the number of trips
underlying each observation25. This ensures that observations influence the coefficient in
proportion to their measurement precision. I implement this test because species richness
is a mean over users’ trips in a district-month and part of the error variance in Equation 2
may thus be explained by differences in the number of underlying trips. Figure S6 shows

24This uses the function arcsinh(x) = ln(x + (x2 + 1)1/2).
25I truncate at the 99th percentile first. As an example outlier, the maximum number of trips in a district-

yearmonth is 3779 by one user i.e., 126 trips per day.
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the cumulative distribution: 10% of observations are a mean over more than 10 trips
(precisely measured) and 90% are over fewer than 10 trips (imprecisely measured). The
coefficient is virtually unchanged and remains significant at the 10-percent level.

Other Robustness Tests Appendix S4.6 demonstrates robustness to a variety of alter-
native fixed effects. Appendix S4.7 investigates spatial error correlation (Conley, 1999)
and finds that precision remains similar even when allowing for spatial correlation up to
1000km. Lastly, Appendix S4.8 reports the same robustness checks above with infrastruc-
ture decomposed by project category. Coefficients on most categories remain negative.

6.7 Robustness: Instrumental Variable Estimates

Next, I show that results are robust to a widely-implemented IV design based on close
races between incumbent and runner-ups in State elections (Appendix S6 for more de-
tails). I instrument project approvals with the fraction of close-election constituencies in
a district with incumbent winners. Since these elections are essentially won by coin toss,
places where the incumbent just barely won and lost should be statistically similar in
terms of economic prospects and other confounders that were previously a concern.

The exclusion restriction assumes that, conditional on controls and fixed effects, district-
level incumbent strength affects local biodiversity only by sanctioning forest diversion for
infrastructure. I acknowledge that this is a strong assumption. A second concern is that
estimates do not generalize to non-competitive districts. For these reasons, I view this
design as a robustness check on coefficient sign rather than another set of main estimates.

The 2SLS strategy compares eBird observations within users travelling to districts
where the incumbent just barely won and lost:

First Stage: In f rastructuredsym = µ1 ICdsy + µ2Cdsy + µ3( f (Mdsy) · Idsy)+

µ4 f (Mdsy) + µ5 Idsy + µ6Esy + ΓX′idsym + φi + γd + θsm + νy + εidsym (7)

Second Stage: SRidsym = β1 ̂In f rastructuredsym + β2Cdsy + β3( f (Mdsy) · Idsy)+

β4 f (Mdsy) + β5 Idsy + β6Esy + ΓX′idsym + φi + γd + θsm + νy + εidsym (8)

where In f rastructuredsym, SRidsym, subscripts, and fixed effects are the same as Equa-
tion 2. Infrastructure is instrumented with ICdsy, the share of constituencies in district d
where the incumbent party won in a close race during the last election. Elections are close
if the win margin is within 2 pp. Cdsy is the share of close-election constituencies where
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the incumbent ran, which helps disentangle the plausibly random election outcome from
the potentially non-random factors that led to a close election in the first place. In the
spirit of a fuzzy regression disctontinuity design, I include the mean win margin (close or
not), Mdsy, which enters linearly, and with second- and third-order polynomials, f (Mdsy),
as robustness checks. I also control for the interaction of f (Mdsy) and Idsy, an indicator
for whether incumbents ran in the district. Lastly, I control for election year, Esy, and
the same covariates, X′idsym, as Equation 2. User-by-year fixed effects are too strict since
eBirders are unlikely to traverse many closely contested districts in a year. I thus include
user and year fixed effects separately, and test their interaction in a robustness check.

The first stage shows a sharp discontinuous decrease in forest encroachments when
incumbents win, and the reduced form shows an accompanying increase in species rich-
ness (Figure S4)26. Second stage estimates (Table S9) are negative, significant, and robust
to various polynomials and bandwidths, with F-statistics near rule-of-thumb levels. Re-
assuringly, estimates are also robust to user-by-year fixed effects (column 6), the same
specification that addresses eBird biases in the main research design. Despite limitations
of the close-election approach, uncovering an infrastructure-biodiversity tradeoff with
this alternative design lends additional credibility to the main findings.

7 The Political Economy of Conservation

Having established that infrastructure expansion degrades biodiversity, this section ex-
plores which institutions minimize the tradeoff. I estimate the tradeoff from the previous
section as a function of whether districts have inclusive or extractive institutions. I find
that the infrastructure-biodiversity tradeoff is smaller under inclusive institutions. I then
explore mechanisms by documenting how project authorities interact with tribal groups
under both institutional types. Informed consent between developers and tribes, as well
as more stringent environmental review, is more common in inclusive districts.

7.1 Data: Measuring Institutional Quality

I begin by categorizing districts as having inclusive or extractive institutions, broadly de-
fined. Data on institutional quality is obtained from Banerjee and Iyer (2005) for 163 dis-
tricts. They distinguish between two colonial institutions: in zamindari districts (N=64),
landlords set land taxes, could dispossess peasants for nonpayment, and kept residuals

26Figure S5 shows no evidence of manipulation around the cutoff. I fail to reject the null hypothesis of
no difference in density at the boundary (Cattaneo et al., 2020).
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after paying the British. In raiyatwari districts (N=99), cultivators paid taxes without a
middleman. Perhaps unsurprisingly, zamindari districts perform worse today on several
equality and development measures. Persistence of class-based inequality and lower abil-
ity of the disenfranchised to mobilize around their interests in zamindari districts are key
mechanisms explaining the lack of convergence27.

Building on their paper, I re-conceptualize raiyatwari and zamindari districts as inclu-
sive and extractive, respectively. To further justify this re-conceptualization, in Section 7.3,
I show that tribal communities are more involved in development planning in inclusive
districts. I also replicate Banerjee and Iyer (2005) in Appendix S4.9 using additional out-
comes. There are fewer protests involving minorities in inclusive (zamindari) districts.
There are also fewer criminal politicians in these districts, though precision is low.

If disaffected groups are better able to engage in the development process and protect
their livelihoods in inclusive districts, then the adverse ecological impacts of infrastruc-
ture should be smaller in these districts. I formally examine this hypothesis next.

7.2 Results: Inclusive Institutions Minimize Species Loss

Estimation To investigate the role of institutions in mediating the infrastructure-biodiversity
tradeoff, I estimate heterogenous treatment effects with the following equation:

SRidsym = α + β1 · In f rastructuredsym + β2(In f rastructuredsym · Inclusived) (9)

+ Ω(In f rastructuredsym · X′d) + ΓX′idsym + φiy + γd + θsm + εidsym

where Inclusived is a dummy for whether district d had a history of inclusive insti-
tutions. X′d are a set of district-level covariates that enter interacted with In f rastructure.
Ω thus accounts for heterogeneous effects of infrastructure along dimensions potentially
correlated with institutions. All other terms are as in Equation 2. Data are aggregated to
1991 census boundaries to match Banerjee and Iyer (2005). The coefficient of interest is β1

and β2, which capture the main infrastructure-biodiversity tradeoff, and any moderation
of the tradeoff depending on institutional type. I focus on the hypothesis that β2 > 0, i.e.,
biodiversity is conserved in districts with better institutions.

Threats to Identification The main identification concern is endogenous institutions
(Aghion et al., 2004). This is less of an issue in my context because zamindar status was
based on British politics and not local characteristics (Banerjee and Iyer, 2005). Moreover,

27In a follow up paper, Lee (2019) provide additional evidence that state capacity is indeed the most
plausible mechanism driving the results in Banerjee and Iyer (2005).
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Table 5: The Impact of Infrastructure on Biodiversity by Institutional Type
(1) (2) (3) (4) (5)

β1: Infrastructure (km2) -0.551∗∗∗ -0.447∗∗∗ -0.434∗∗∗ -0.394∗∗∗ -0.551∗∗

(0.067) (0.051) (0.073) (0.082) (0.214)

β2: Infrastructure (km2) 0.434∗∗ 0.340∗ 0.315∗ 0.421∗∗ 0.434∗∗∗

× Inclusive (=1) (0.116) (0.144) (0.134) (0.129) (0.142)

Infrastructure × Tribal Share Yes Yes Yes Yes Yes

Infrastructure × Baseline Forest Yes Yes Yes Yes Yes

Infrastructure × High-Activity No No No Yes No

User × Year FEs X X X X X
District FEs X X X X X
State x Month FEs X X X X X
Spillovers X
Weighted X
Clustering Biome Biome Biome Biome District
Observations 58760 58760 58760 58760 58760
R2 0.704 0.704 0.784 0.704 0.704

Note: ∗ p < .1, ∗∗ p < .05, ∗∗∗ p <.01. The outcome is mean species richness across users’ trips in a
district-month. Inclusive means the district has historically inclusive institutions. Sample is restricted to
163 districts in Banerjee and Iyer (2005) and aggregated to 1991 boundaries. Tribal share is the fraction of
district population belonging to a tribal group as measured in 2011. High-Activity equals one if the district
has above-median number of users recording above-median number of trips per user. All specifications
include user-year, district, and state-month fixed effects as well as controls for temperature, rain, traveling
trips, log nightlights, log duration, log distance, log experience, log group size, and log spatial coverage.

time-invariant differences in the ecology of inclusive and extractive districts are absorbed
by district fixed effects. The remaining concern is that infrastructure may exhibit hetero-
geneous effects along dimensions correlated with institutional type, in which case β2 is
biased. The interaction coefficient Ω controls for this source of endogeneity, and I test
sensitivity to several definitions of X′d as a safeguard.

Results and Robustness Estimates of Equation 9 are in Table 5. All columns control
for interactions of infrastructure with baseline tribal population share as well as forest
cover. The former separates heterogeneity through population effects from that through
institutions. The latter accounts for potentially higher forest cover in inclusive districts, in
which case species resilience in these districts may upward bias β2 (Section 6.4, Table 4).

78% of species loss is erased in inclusive districts. The mitigating effect of inclusive
institutions are very similar when controlling for spatial spillovers within the biome (col-
umn 2), weighting by number of eBird trips underlying SRidsym (column 3), and adding an
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interaction between infrastructure and a district dummy for high eBird activity (column
4). The latter accounts for β2 potentially confounding differences in eBird usage across in-
stitution types. Lastly, the mitigating effect remains statistically significant under district
clustering (column 5). Since the moderating role of institutions is independent of tribal
population, we can conclude that institutions empowering disaffected people, not their
population per se, determine the extent of sustainable development.

Table S10 conducts additional robustness tests performed in Section 6.6. Columns 1-4
show that estimates are generally robust to alternative fixed effects that account for sub-
state seasonality and flexible learning rates. The interaction is noisy in column 1, likely
due to demanding user-by-month fixed effects. Column 5 shows that treatment hetero-
geneity is very similar on the sample of users who signed up for eBird in 2015, suggesting
that estimates are not driven by a changing user base. The main effect becomes noisy,
perhaps due to the stringent sample restriction. Column 6 shows stable estimates when
accounting for COVID. To deal with outliers, columns 7 and 8 show that estimates are
stable when dropping mega-projects and when using IHS on the infrastructure variable,
respectively. Lastly, estimates are robust to clustering by state (column 9).

The results emphasize the role of inclusive institutions in mitigating anthropogenic
pressures on ecosystems. However, it is difficult to glean specific policy lessons since the
muted tradeoff may operate through many channels. I investigate mechanisms next.

7.3 Policy Mechanisms: Tribal Rights and Informed Consent

Informed Consent between Developers and Tribes Why are development projects built
more sustainably in districts with historically inclusive institutions? I explore two impor-
tant mechanisms: developers are more likely to incorporate the voices of tribal people,
and more likely to undergo stringent environmental review, in inclusive districts.

Banerjee and Iyer (2005) argue that the absence of a landed gentry in inclusive districts
left a legacy enabling “elites and the masses to act together in the collective interest”. Lee
(2019) shows that more state contact with cultivators in inclusive districts left a legacy
of better state capacity compared to extractive districts where the state was absent. This
suggests that tribes can better mobilize around their interests in inclusive districts.

Permit Data The simplest test is whether projects in inclusive districts are more likely
to follow the FRA, which requires inclusion of tribes during the permitting process (Sec-
tion 2). Yet if the policy is binding, then there would be no variation. Recent reports
indicate that FRA enforcement is weak, often bypassing consent altogether (Dubey et al.,

34



Figure 6: Enforcement of Forest Rights Act (2006)
Note: Data are the share of district projects approved with informed consent by the Gram Sabha during the
study period. Sample comprises the 80% of projects that reported informed consent (the digital subsample).

2017). Since the project sample reports whether consent was obtained (Figure S7), I plot
the distribution of projects obtaining Gram Sabha consent in Figure 6. The lack of right-
tail bunching is evidence of imperfect compliance, implying that there are districts where
inclusive development is always, sometimes, and never observed. I exploit this fact to
study if inclusive institutions are actually more inclusive.

Two other permit variables highlight mechanisms. The first is whether a supplemen-
tal cost-benefit report was commissioned, beyond the standard site monitoring reports.
This reflects the rigour of environmental review since commissioning is based on value
judgement28. The second is whether the project is sited in a protected area buffer.

Estimation I match project permits with the inclusive-extractive dummies and use pooled
OLS to compare project characteristics under each district institution. Since institutional
type is fixed, I make cross-district comparisons within the same state and time-period:

Ypdsym = α + β1 · Inclusived + ΓX′pdsym + θsm + εpdsym (10)

where Ypdsym is a dummy for whether project p approved in district d of state s in year y
and month m received informed consent, completed a supplemental cost-benefit report,
or was sited near a protected area. Inclusived is the institutional dummy from Equation 9.

28Value judgment is used for projects > 20 ha., which is more than 90% of my projects.
Official guidelines here: http://forestsclearance.nic.in/writereaddata/Addinfo/0_0_

7111512571261CostBenefitAnalysisGuidelinesforforestlanddiversion-2017.pdf
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Figure 7: Mechanisms: Informed Consent, Cost-Benefit Analyses, and Project Placement
Note: Data are at the project level. Bars are coefficients from Equation (10). Sample is restricted to 163
districts in Banerjee and Iyer (2005). Informed consent indicates whether the FRA was followed. Cost-
Benefit Analyses indicates whether one was done during project review. Protected Area equals one if the
project is sited in or near one. All specifications control for: project size, tribal population share, baseline
forest cover, latitude, altitude, coastal dummy, and district area. Grey bars are 95% confidence intervals.

X′pdsym is a set of covariates including project size, tribal population share, baseline forest
cover, and district size. θsm are state-month fixed effects. β1 reveals the proportion of
projects with each feature in inclusive districts compared to extractive ones.

Results Projects in inclusive districts are 8 pp. more likely to obtain informed consent
from tribal groups compared to projects sited in extractive districts in the same state (Fig-
ure 7; Table S11 for table). Forest officers in inclusive districts are also 7 pp. more likely to
commission extra cost-benefit reports during project review. Lastly, projects in inclusive
districts are 1 pp. less likely to be sited near a protected area. These are three important
mechanisms driving the smaller infrastructure-biodiversity tradeoff in Table 5.

Beyond these three, the sorting of conservation-friendly projects toward inclusive dis-
tricts is another potential mechanism leading to less species loss in these districts. To test
whether inclusive and extractive districts receive different types of projects, Table S12 esti-
mates the project category distribution by institutional type using the same data as Equa-
tion 10. Values are coefficients from regressing project category indicators on Inclusived.
Overall, project categories are well balanced across institutional types, partially ruling out
sorting as a mechanism. There are two exceptions: first, electricity projects are more com-
mon in inclusive districts under state fixed effects. Recall that these projects have a pos-
itive (albeit insignificant) effect on species diversity (Figure 4B). Second, mining projects
are (weakly) less common in inclusive districts, which may partially explain smaller bio-
diversity loss in these districts (Table 5). Otherwise, there are statistically similar propor-
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tions of projects between the two district types.
The minimal role of sorting implies that inclusive institutions themselves have “teeth”,

as observed through higher rates of informed consent, greater environmental scrutiny of
proposed projects, and an overall smaller ecological footprint of projects in these districts
(Table 5). Figure 7 also corroborates Banerjee and Iyer (2005) and other studies. Duflo and
Pande (2007) use the same institutions classification to claim that populations affected by
dams are more effective at demanding compensation in inclusive districts. Lal et al. (2021)
show that inclusive governance in India increased tree cover. My results thus point to the
mechanisms through which institutions drive conservation. They suggest that engaging
forest-dependent communities, along with more stringent checks-and-balances during
project approval, are vital for protecting biodiversity.

8 Conclusion

This paper provides rigorous evidence on the impact of infrastructure on biodiversity in a
developing nation. It also quantifies the role of institutions in mitigating the tradeoff. Be-
tween 2015-2020, development in India’s forests accounted for nearly 20% of the decline
in bird diversity. Species loss does not rebound in the medium-run, and is accentuated
in already-fragmented areas. The tradeoff is more than halved when local institutions
amplify the voices of indigenous groups in the development planning process.

My results are especially relevant as emerging economies prioritize the types of in-
frastructure studied here. Surprisingly, studies from emerging regions find limited eco-
logical costs of infrastructure projects (Asher et al., 2020; Garg and Shenoy, 2021; Baehr
et al., 2021). In the absence of biodiversity data, these studies use tree cover to measure
ecosystem health, whereas I leverage several million verified species sightings. After ac-
counting for observer biases and spatial spillovers, this novel data yields robust evidence
of anthropogenic species decline, and can be used to help inform infrastructure planning.

Results of this paper are policy relevant at both a broad and grassroots level. In places
where institutions favour the economically advantaged, infrastructure development is as-
sociated with more biodiversity loss. This highlights the need for people-centred conser-
vation policy. India has made strides with the FRA (2006), which promises forest rights to
indigenous people and their inclusion in development decisions. Yet nearly two decades
later, half of forest rights claims remain legally unrecognized and face other forms of weak
enforcement (Ministry of Tribal Affairs, 2022). I find that upholding the FRA helps neu-
tralize the infrastructure-biodiversity tradeoff. In sum, inclusive institutions and proce-
dural justice are critical for meeting the dual objectives of development and conservation.
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This paper is not without limitations. First, species richness abstracts from notions
of functional diversity, genetic diversity, and other dissimilarity indices (Weitzman, 1992,
1993). Second, with a six year study period, I am unable to study whether species di-
versity rebounds in the long-run. Lastly, without reliable species values, I am unable to
benchmark the cost of infrastructure-driven species loss. Despite these limitations, this
study provides useful insights into the dynamics of biodiversity in human-modified land-
scapes and is relevant for decision-makers tasked with conserving local biodiversity.
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