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Abstract

This paper quantifies the long-run effects of India’s dramatic expansion of coal-fired electric
power plants from 1970 to 2017 on neonatal, infant, and child health. We used a particle tra-
jectory model drawing wind-induced emissions dispersion patterns from power plants to build
an exogenous measure of cumulative exposure to pollution over three decades. Our measure
of historic power plant exposure predicts present-day air quality three to six times better than
conventional wind-direction instruments in the literature. A one-standard difference increase in
long-term exposure to power plant emissions increases neonatal, infant, and child deaths by 0.6
(2 percent of the mean), 0.9 (1.9%) and 1.3 (2.2%) per 1,000 live births, respectively. These effects
are largely driven by exposure in utero, as well as exposure to private power plant clusters that
formed between 1992 and 2005. We find no evidence of differential economic development be-
tween more and less exposed districts, ruling out adaptation and underscoring pollution as the
main mechanism.
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1 Introduction

Increased electricity demand is a characteristic feature of economic development. One-third of
global electricity is generated by coal-fired power plants, with China and India accounting for 85%
of new coal power capacity since 2005 (Shearer et al., 2019). While electricity access is critical for
economic progress, coal combustion also releases harmful air pollutants. In 2015 alone, outdoor
air pollution resulted in about 4.5 million deaths globally (Landrigan et al., 2018; Murray et al.,
2020). Nearly 1 million of these deaths occurred in India, the most of any country.

Although an emerging literature quantifies short-term impacts of exposure to poor air quality,
less is known about long-term impacts largely due to difficulty identifying quasirandom variation
in long-term air quality across geographic units. Yet, a deeper understanding is necessary given
that many of the largest sources of air pollution are long-lived infrastructure assets, like power
plants and highways. Thus, estimates of the long-term effects of differences in ambient air qual-
ity are arguably more important to policy than the short-term effects, which have been studied
extensively in the literature.

The main contribution of this paper is to document the impact of long-run exposure to coal-
fired power plant pollution on early-life mortality in India from 2000 to 2017. India is an ideal
setting to study this issue because power plants constitute the largest point source of outdoor
air pollution in India. Despite the rapid growth of solar investment in recent years, India still
relies on coal-fired power to supply two-thirds of its electricity. Even if renewables growth rates
are sustained and no new coal power plants are built, it is projected that coal will remain India’s
major energy source for at least 10 more years and the dominant source until 2040 (International
Energy Agency, 2021). This inertia reflects more than five decades of concerted investment in coal
power, including more than doubling installed capacity since 2000.

The closest point of comparison is from two short-run studies. Most related, Barrows et al.
(2019) find that a 1 standard deviation increase in coal-fired power plant capacity in Indian dis-
tricts results in 15% higher infant mortality. In a developed country setting, the equivalent mor-
tality impact is 6.5% in mid-20th century United States counties (Clay et al., 2016). Both studies
leverage annual panel data over several decades, which is suited for identifying short-run, but
not long-run, impacts. One reason that extrapolating these estimates to the long-run is problem-
atic is because effects of exposure may accumulate over time, such that the cumulative effect of
long-term exposure exceeds the sum of short-term coefficients. Instead, what is needed is a direct
source of exogenous variation in long-run exposure to coal power plant pollution.

We overcome this challenge by first compiling detailed data on the location of all coal power
plants constructed in India between 1970-2017. We then compute exposure to emissions from
these plants using a state-of-the-art atmospheric dispersion model. The model simulates a “puff”
of tracer particles emanating from each chimney, draws their three dimensional wind patterns
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(known as wind fields) over space and time, and shows where the particles land on a 10×10km
grid. We run the model on a plant-by-year basis and then compute the cumulative exposure at
the district level over thirty years. This yields a novel, plausibly exogenous, measure of a district’s
total population exposure to upwind power plant pollution over three decades.

Our model-generated exposure measure is more predictive of ambient pollution than standard
wind-direction measures from the literature. First-stage regressions of Sulfur Dioxide (SO2) and
Nitrogen Dioxide (NO2) concentration on historic power plant exposure yield F-statistics between
three and six times greater for our measure compared to the conventional measure. Our approach
also has the advantage of imposing no restrictions on the distance over which emissions travel,
allowing us to study health outcomes manifesting hundreds of kilometers from power plants.

To estimate long-term health impacts, we combine historic power plant exposure with new
district-level data on neonatal, infant, and child mortality compiled by Dandona et al. (2020) from
a variety of demographic surveys and vital registration metrics. These data are available for the
years 2000, 2007, and 2017, permitting a research design based on three separate cross-district
comparisons within states. By exploiting cross-sectional variation, we can identify plausible con-
trol groups for historically exposed districts: other districts in the same state, located at equal
distance to power plants, but exposed to less power plant pollution in the past three decades due
to differences in wind fields.

Our analysis yields three key findings. First, children in districts consistently exposed to coal-
fired power plants over the past three decades experience significantly more deaths during the
first five years of life compared to cleaner districts in the same state. A one standard deviation
increase in historic exposure causes 0.6 more neonatal deaths (2% of the mean), 0.9 more infant
deaths (1.9%), and 1.3 more child deaths per 1000 live births.

Second, worse ambient air quality in exposed districts is the main mechanism driving our
mortality estimates. We find that ambient SO2 and NO2 concentrations are 50% and 16% higher,
respectively, in districts historically more exposed to power plants. Although air quality may
not be the only channel through which power plant exposure affects health, we underscore its
importance by ruling out two competing mechanisms. We rule out differential adaptation by
showing that there is no difference in present-day measures of economic development—including
literacy, poverty rates, and nightlight intensity—between historically exposed and non-exposed
districts in the same state. We also show no evidence of different migrant shares, helping rule out
endogenous sorting as a potential explanation for our results.

Third, emissions exposure in-utero as well as during the 1992-2005 period are the critical peri-
ods influencing present-day mortality. We arrive at this result by decomposing cumulative expo-
sure into distinct time periods marked by policy-driven growth in electricity generation. 1992-2005
is the period after which private players were allowed to enter the power generation sector in In-
dia. Our results imply that present-day mortality from historic emissions is mainly influenced by

3



plant clusters forming after the 1991 deregulation.

Contributions to the Literature. The main contribution of this paper is to credibly estimate the
health impacts of long-run exposure to coal-fired power plants, an important gap in the literature.
A deeper understanding of long-run impacts is important since most pollution regulations strive
for long-term improvements in air quality.

Most related literature documents short-term health effects of air pollution with panel data in
developed countries (Chay and Greenstone, 2003; Currie and Neidell, 2005; Currie and Walker,
2011; Knittel et al., 2016; Deryugina et al., 2019), and to a lesser extent in developing countries
(Arceo et al., 2016; Jayachandran, 2009; Barrows et al., 2019). Among the few papers documenting
long-term effects, almost all elicit later-life health impacts of early-life pollution exposure (Ander-
son, 2019; Rosales-Rueda and Triyana, 2019; Currie and Vogl, 2013). Besides the few studies on the
impacts of in-utero exposure on early-life outcomes (Currie and Neidell, 2005; Von der Goltz and
Barnwal, 2019), we are unaware of studies covering a longer historic period of exposure.

The key to answering our research question is to identify a source of exogenous variation in
long-term exposure to coal power plants. The cornerstone of our identification strategy is an at-
mospheric dispersion model that simulates the trajectory of tracer particles from any point source
based on 3D wind fields and other meteorological characteristics. Instead, many previous studies
rely on the construction of treatment (exposed) and control (nonexposed) groups based on distance
from a polluting source (Currie et al., 2015; Jayachandran, 2009; Komisarow and Pakhtigian, 2022).
Some leverage variation in wind direction for additional exogeneity (Deryugina et al., 2019; Bar-
rows et al., 2019; Herrnstadt et al., 2021). Both approaches require restrictive assumptions about
the area and distance of pollutant dispersal, which generally results in limiting the treatment area
to a radius around the emission source that may reflect only a small fraction of the distance over
which emissions disperse. Moreover, wind direction is better suited for predicting seasonal varia-
tion in pollution but loses substantial explanatory power when aggregated for long-term analyses.
In contrast, our model-generated measure requires no assumptions about plume shape or size and
retains all spatial variation during aggregation. It also allows us to capture a greater share of the
total exposure to air pollution due to emissions.

Our measurement approach is conceptually similar to previous studies that identify quasi-
random variation in exposure to environmental change. For example, Duflo and Pande (2007)
study the impact of dams in India. Since dam placement is endogenous, they use differences in
river gradient to identify plausibly exogenous variation. Lipscomb et al. (2013) and Blakeslee et al.
(2020) use a similar approach to measure exposure to hydroelectricity and groundwater shortages
in Brazil and India, respectively. Whereas we also rely on an underlying source of quasi-random
variation (the dispersion model), our approach differs since we are interested in impacts of expo-
sure to emissions from power plants, not the impact of the plants per se. As such, districts without
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power plants, and possibly quite far from them, may be treated in our analysis.
Methodologically, we join the literature leveraging cross-sectional research designs to elicit

long-term impacts of environmental change. First introduced by Mendelsohn et al. (1994), this ap-
proach relies on comparing outcomes across geographic units with different long-term climate
averages. Identification relies on inclusion of many geography covariates and a selection-on-
observable assumption, which is prone to omitted variable bias (Deschênes and Greenstone, 2007).
Druckenmiller and Hsiang (2018) introduce a new estimator, called spatial first differences, which
allows credible inference even with omitted variables. However, the approach only makes com-
parisons between neighbors, which is too restrictive for our application. Since our measure of
historic exposure is plausibly orthogonal to geography, our cross-sectional approach is more flex-
ible and less reliant on selection-on-observables.

In addition to providing new evidence on the impacts of historic pollution exposure on early-
life mortality, we also advance a smaller literature on the impacts of exposure to power plants
specifically. To our knowledge no other study has estimated the long-run health impacts of sus-
tained exposure to coal-fired power plants. Heblich et al. (2016) document path-dependence in
UK neighborhood composition following historic power plant investments, but do not investigate
health disparities. In the short-run, Barrows et al. (2019), Cropper et al. (2021), and Gupta and
Spears (2017) find increases in infant mortality, total mortality, and coughing incidence, respec-
tively, from power plant exposure in India. Our results imply that adverse health outcomes in the
short-run are also observable in the long-run, implying minimal adaptation. This contribution is
especially important given that coal is expected to be India’s dominant fuel source for the next
several decades.

The rest of this paper is organized as follows. The next section describes the data and, in
particular, details of the particle trajectory model. Section 3 presents three motivating facts gleaned
from the data along with our main estimating equations. Sections 4 and 5 presents the main results
and robustness checks, respectively.

2 Data Construction

We use three main data sources to study the health effects of long-run exposure to coal power
plants: the universe of thermal power plants operating from 1970-2017; data on neonatal, infant,
and child mortality in 2000, 2007, and 2017 for all districts in India; and high-resolution satellite
data on ambient air pollution for the same three years. The key identification challenge is finding
exogenous variation in long-run exposure to power plants. We employ a particle trajectory model
that uses wind-fields to trace particle paths from each smoke stack in our sample. This section
describes our data and how we measure long-term power plant exposure.
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2.1 Main Variables

Thermal Power Plants. Thermal coal-fired power plants generate the overwhelming majority of
India’s electricity. We obtained annual installed capacity reports from all utility-scale plants op-
erating in India between 1970 and 2017 from the Central Electricity Authority (CEA). There were
217 coal power stations with 757 generating units in operation during these 47 years. We manually
geolocate each plant using multiple sources and then verify its presence using visual inspection of
satellite imagery. Next, we use the plant coordinates to identify the district of construction and ag-
gregate capacity to the district-annual level. This produces a record of thermal coal-fired capacity
expansion within districts over five decades for the whole country.

Ambient Air Pollution. We use high-resolution satellite-based measures of SO2, NO2, and partic-
ulate matter (PM2.5). Gridded SO2 data is retrieved in separate monthly files for 2004-2017 from the
Ozone Monitoring Instrument (OMI) aboard NASA’s Aura satellite at 0.25×0.25 degree resolution.
Cell values represent SO2 concentration in the lower troposphere in Dobson Units (2.687× 10−20

molecules/m2). Gridded NO2 data for the same period is also retrieved from the OMI satellite
at 0.25×0.25 degree resolution. Cell values are measured in molecules/cm2. Both data products
undergo substantial cleaning, validation, and outlier detection by NASA before public release.

PM2.5 is an amalgamation of multiple underlying particulate species and not measured directly
by any satellite instrument. We instead use a reanalysis data product developed by Van Donkelaar
et al. (2016). This product provides estimates of PM2.5 concentrations by assimilating concentra-
tions of underlying particles (e.g. black carbon, organic carbon) through a geo-chemical transport
model to produce ground-level PM2.5 estimates. Data is provided annually at 0.1×0.1 degree res-
olution for 1996-2017.

We construct a district-annual pollution panel in two steps. First, we extract weighted mean
pollution across cells within district boundaries as delineated by the 2011 Census. Cells over-
lapping multiple districts contribute to each district mean in proportion to their overlap fraction.
Second, we aggregate over months to the district-annual mean (for SO2 and NO2).

Neo-Natal, Infant, and Child Mortality. We obtain mortality data at the district level for the years
2000, 2007, and 2017 calculated as part of the 2017 Global Burden of Disease (GBD) study1. To
our knowledge, these are the most comprehensive and recently validated sub-national mortality
estimates for India. District mortality is measured as number of neo-natal (0-28 days), infant (< 1
year), and child (< 5 years) deaths per 1000 live births. Estimates are assembled from numerous
underlying data sources according to a standardized procedure used for all 195 studies included in
the GBD. For India, the main data sources include: the Sample Registration System, Vital Registra-

1Data is available from Dandona et al. (2020)

6



Figure 1: District-wise Neonatal Mortality (2017)

Note: Colours describe neonatal deaths per 1000 live births. Data from Dandona et al. (2020). Grey indicates NA.

tion Systems, Population Censuses, the National Family Health Surveys, District Level Household
Surveys, and Annual Health Surveys. Details of all data sources and calculations are provided in
Dandona et al. (2020).

Data are provided for 2017 district delineations (723 districts). We manually map these back
to their “parent” districts as per 2011 borders for consistent matching across datasets. Figure 1
illustrates the spatial distribution of neonatal mortality across districts in 2017.

Determinants of Plant Placement. We also collected data on a range of determinants of power
plant placement to include as covariates in our analysis. Power plants are typically sited in districts
with water bodies, coal deposits, and low elevation (see section 3.1 for details). These districts may
experience higher pollution exposure by virtue of proximity, and may also develop differently than
districts far away from power plants.

We select plant placement covariates based on engineering considerations and government
guidelines (Authority, 2012; Central Electricity Authority, 2010; Mays et al., 2011; Planning Com-
mission, 1961). Digital vector maps of coal deposits are obtained from the United States Geological
Survey (Trippi and Tewalt, 2011). Rivers, lakes, and reservoir shapefiles are obtained at 10m reso-
lution from Natural Earth Data.2 A gridded digital elevation map is obtained from the NOAA at

2Accessed from: http://www.naturalearthdata.com/downloads/10m-physical-vectors/
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10km × 10km resolution.3

We compute numerous plant placement covariates from these digital maps, including: dis-
tance from district centroid to nearest power plant, distance to nearest coal deposit, area of nearest
deposit, distance to water bodies, area of nearest water body, elevation, and slope.

Adaptation. We collect data on a wide range of development outcomes to test for differential adap-
tation between districts exposed and not exposed to power plants. The majority of development
indicators are obtained from the Socioeconomic High-resolution Rural-Urban Geographic Dataset
on India (SHRUG) (Asher et al., 2021). The main variables include: literate population share,
percentage of households below the 2012 national poverty rate (27.2 Rs./day in villages and 33.3
Rs./day in towns), per capita consumption (Rs.), and total employment in the service sectors. All
variables are provided at the village/town level and then aggregated up to the district.4

Endogenous sorting is another adaptation response that poses an identification challenge in
long-term studies (Kuminoff et al., 2013). We test for this using recently released migration data
from the 2011 Census. The Census D3 tables report the district migrant population by type (i.e.
for marriage, employment, with whole family) and by when migrants arrived (i.e. 1-4 years ago,
5-9 years ago, etc.). We use the number of migrants who in-migrated with their whole family to
study endogenous sorting in section 5.2.

2.2 The HYSPLIT Particle Trajectory Model

Our empirical strategy relies on plausibly exogenous long-run variation in exposure to air pollu-
tion emissions from power plants. The distinguishing feature of our approach is an atmospheric
dispersion model that draws wind-driven trajectories of tracer particles from each plant chimney.
We use this to derive estimates of how exposed districts have been to power plant pollution over
the past three decades. This section describes how long-run exposure is calculated and then dis-
cusses the advantages of our modelling approach.

Dispersion Model Overview. District exposure to power plant emissions in the long-run is mea-
sured using the the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model
developed by the NOAA (Draxler and Hess, 1998; Draxler et al., 2020). HYSPLIT is a modeling
system for computing simplified dispersion trajectories widely used by the atmospheric science
community. Although originally designed for rapid response to atmospheric emergencies, such as
tracking downstream exposure to toxic gas leakage and volcanic ash (Stein et al., 2015), HYSPLIT

3Accessed from: https://www.ngdc.noaa.gov/mgg/topo/globe.html
4Variables in the SHRUG are assembled from different administrative sources and mapped to consistent geographic

units. The underlying data sources for our variables include the 2011 Census (literacy), 2012 Socio-economic and caste
census (poverty, consumption), and 2013 Economic census (employment).
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can generate dispersion plumes from any point source. The model uses meteorological wind fields
to determine the 3D path of computational air parcels emanating from large point sources–in our
case, power plants—to estimate the spatial distribution of wind-driven exposure.

We use HYSPLIT because of its simplicity. More advanced chemical transport models (CTMs)
have estimated spatiotemporal trajectories of downstream air pollution based on complex atmo-
spheric chemistry and physical characterization of multiple particle species at high resolution
(Guttikunda and Jawahar, 2014). The computational complexity of these models make it im-
practical for studying downstream exposure profiles of hundreds of point sources over several
decades. In contrast, HYSPLIT produces simplified emission dispersion plumes almost entirely
by pre-generated 3D wind fields. This simplifies full-scale CTMs in exchange for computational
scalability (Henneman et al., 2019, 2021).

Long-term Exposure Computation. We use version 4 of HYSPLIT to measure long-term expo-
sure to coal power plant emissions in India. Our approach mirrors Henneman et al. (2019), who
model coal power plant exposure in the United States at the zip-code level. Their low complex-
ity method predicts actual downstream pollution levels with high accuracy, comparable to more
complex CTMs (Henneman et al., 2021).

We calculate long term exposure in three steps. First, we draw bi-monthly exposure plumes for
each power station from the date of commissioning until 2017. Figure 2A show the location and
capacity of all stations in our sample. To construct plumes, we first generate a 0.1×0.1 degree grid
covering all of India and then run the trajectory model from the plant coordinates for 24 hours
every 14 days. The model simulates a computational “parcel” of air, represented by the model
default fixed number of mass-less particles emitted from the smokestack. The count of particles
landing in each grid cell, within a fixed atmospheric boundary layer height of 900m, at the end
of the 24-hour run is used as an estimate of the fraction of emission emanating from the corre-
sponding source smokestack. We use a parallel computing framework to reduce the computation
burden and produce separate time-varying dispersion plumes for each of the 217 power plants
in our sample. The result is a series of plant-level exposure rasters describing the downstream
concentration of mass-less computational air parcels EmissionCountijt, at each receptor grid cell i,
emitted from coal power station j at time t.

Second, we sum over plant-level rasters in each year to calculate the total exposure of grid
cell i to all coal power plants operating in a given year, adjusting for the fact that exposure to a
mega power plant is different than a small plant. Specifically, downstream emission exposure over
the full grid, GridExposureit, is calculated by weighting the normalized, gridded EmissionCountijt

concentration distribution of each coal station j by its respective generating capacity Capacityjt in
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Figure 2: Coal Power Plant Capacity Expansion
(A) Location and capacities of coal fired power plants in India (2017). (B) Long-term cumulative downstream exposure
estimated by the HYSPLIT model at the district-level (1970-2017). (C) Time trend of the total installed capacity of coal fired
power plants in India (1970-2017). The major policy changes influencing the different policy driven capacity expansion
phases are shown along the timeline.

gigawatts (GW), and then summing over the full set of coal stations:

GridExposureit = ∑
j

((
EmissionCountijt

∑i EmissionCountijt

)
× Capacityjt

)
(1)
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GridExposureit can be interpreted in GW equivalents, since the capacity of plant j is distributed
across the grid according to the exposure of each cell to emissions from the plant. Intuitively, if
plant capacity is 1 GW and the exposure of a far-away cell is 0.01, then it is as if there is 10 MW of
installed capacity in the cell even though, in reality, there is no power plant there.

Third, we aggregate downstream exposure at the district-level. Exposuredt for district d in time
period t measures total exposure per cell in a district, where each spatial intersection consists of
GridCountd number of grid cells pro-rated on cell area for partial intersections:

Exposuredt =
1

GridCountd
∑

i
GridExposureit, ∀ i spatially intersecting with district d (2)

To elicit the long-term impacts of power plant exposure, we accumulate Exposuredt. The
longest cumulation window of fixed length is thirty years since mortality data is available for
2000, 2007, and 2017, and the oldest power plant in our sample was constructed in 1970. Although
the start year of cumulation differs in each cross-section (i.e. 1970 for 2000, 1977 for 2007, etc),
long-term exposure always refers to three decades of continuous exposure to power plants, which
allows for analogous coefficient interpretation in our regressions. Figure 2B shows the spatial dis-
tribution of cumulative Exposuredt for the year 2017.

Advantages of a Dispersion Model Generated Pollution Exposure Measure. Our power plant
exposure measure offers several advantages that enable credible identification of long-term im-
pacts. First, the exposure measure is entirely model-generated and requires no assumptions about
the shape and size of dispersion plumes. In contrast, conventional wind-direction measures as-
sume a plume shape (typically a 45◦ cone around the wind vector) and length and do not account
for diffusion over space.

Second, our exposure measure is well suited for long-term analyses. Since it is based on tracer
particle counts, aggregation to any level retains all the spatial distribution and concentration pro-
file information. This allows for credible comparisons of health outcomes in long-run exposed
versus non-exposed districts. Conventional measures typically capture within-year seasonal vari-
ation in wind direction, which loses substantial explanatory power when aggregated over multiple
years (Anderson, 2019; Deryugina et al., 2019).

Third, since HYSPLIT independently computes wind-field driven air transport from each source
station, we are able to apportion differential exposure at a pollution species-level (i.e. SO2, NO2,
PM2.5) in the receptor districts attributable to specific source power plants.

Fourth, using our method, spatial contours of the downstream exposure plume can be explic-
itly demarcated, either through machine learning algorithms or percentile-based cutoffs. We can
then correct for potential spatial correlation among districts under the same plume by clustering
standard errors at the plume level (see section 3.2). This enables more precise estimation of stan-
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dard errors compared to existing literature.
Finally, our approach allows for meaningful counterfactual policy simulations. Since our ex-

posure measure is aggregated from plant-level dispersion runs, we can easily take plants offline,
simulate abatement scenarios through capacity adjustments, or simulate different time-trends for
coal phase-downs.

3 Research Design

Our dispersion model generates the complete spatial extent and intensity of wind-driven expo-
sure to coal power plant emissions across all districts. However, power plants themselves are not
randomly sited, complicating inference from comparing outcomes in exposed versus non-exposed
districts. This section describes our research design for credibly estimating long-term impacts of
power plant exposure. We first build intuition, then demonstrate the improved predictive accu-
racy of our exposure measure compared to conventional approaches, and then finally state our
formal estimating equations.

3.1 Motivating Facts

Power plants are sited primarily based on geographic suitability. Plant location is endogenous
and reflects many factors, especially geographic suitability. This natural resource basis for power
generation has been an institutional feature of India’s power sector since the 1961-66 Five-Year
Plan:

“Steam power stations should be sited near collieries [coal mines], washeries [water
bodies] and oil refineries. All power stations should be inter-connected to form state,
zonal or super-grids, so that the energy is pooled and used to the best advantage of the
region.”(Planning Commission, 1961)

This set the stage for India’s “coal-by-wire policy,” which sought to site new power plants near
the coal deposits. In many countries that underwent rapid expansions of their fleet of coal-fired
power plants, including China and the United States, power plants were sited near the population
and industrial centers that consumed the largest shares of the generated electricity. This system
required extensive reliance on rail networks to ship coal from mines to power plants, a costly en-
deavor that often more than doubles the delivered cost of coal relative to its cost at the mine mouth.
Under the coal-by-wire policy, India pursued power sector expansion by siting plants near the coal
mines and deposits, providing the plants’ fuel rather than demand centers. Instead of relying on
costly transportation of coal over long distances to plants, it relied on transportation of the gener-
ated electricity from plants to demand centers by way of the high-voltage transmission networks.
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Table 1: Power Plant Placement
Shift-Share [2008-2017] Cross Section

Annual Monthly 2017

(1) (2) (3) (4) (5)

Capacity (MW) Capacity (MW)
Exposure
(no mask)

Exposure
(no plants)

Exposure
(50km mask)

Proximity to Coal 2.650∗∗∗ 2.640∗∗∗ 20.059∗∗ 7.711∗ 8.214∗∗

(0.723) (0.681) (7.300) (4.273) (3.081)

Nearest Coal Area -0.002 -0.002 -0.047 -0.065 -0.046
(0.003) (0.002) (0.055) (0.042) (0.032)

Water Area w/n 25km 0.049∗∗ 0.062∗∗∗ 0.774∗∗∗ 0.331 0.245
(0.020) (0.021) (0.161) (0.256) (0.157)

Proximity to Coast -0.022 0.003 -0.853 -1.078 -1.112
(0.119) (0.113) (0.539) (0.706) (0.741)

Elevation -0.020 -0.018 0.081 0.048 0.063
(0.033) (0.030) (0.086) (0.052) (0.045)

Slope -0.176 -0.150 -0.549 -1.303∗ -1.054
(0.369) (0.366) (1.658) (0.667) (0.660)

District FEs X X
State FEs X X X
State × Year FEs X X
Month FEs X
Clustering District District Plume Plume Plume
N 6290 75208 632 525 605
R2 0.899 0.894 0.452 0.570 0.622
∗ p < .1, ∗∗ p < .05, ∗∗∗ p <.01. Proximity to coal and coast are measured as inverse distance from the district centroid.
Coal and water area are measured as means over district cells. Coefficients on elevation and coal area are multiplied by
1000. Slope and water area are multiplied by 1000 and 108, respectively. In columns 1-2, row variables are interacted with
predicted state capacity. Columns 3-5 represent cross-sectional regressions in 2017 where rows are uninteracted. Exposure
is cumulated over thirty years. Masks define the radius around power plants within which cells are deleted prior to
aggregation. Column 4 applies no mask and drops all districts with power plants.

Despite this reform, capacity investment remained stagnant until the mid-2000s, after which the
electricity sector unbundled and opened up to private players. Installed coal-fired capacity nearly
tripled thereafter between 2008-2017 (see figure 2C).

Table 1 shows the role of the coal-by-wire policy during this dramatic expansion. Columns 1
and 2 show six geographic determinants of yearly and monthly capacity expansions. Each geogra-
phy variable is fixed and thus enters interacted with installed capacity at the state level. The latter
is predicted from pre-period state shares of national capacity to ensure exogeneity5. Each coef-
ficient therefore describes the share of state capacity allocated to districts closer to coal deposits,

5This type of specification mirrors the standard shift-share design (Goldsmith-Pinkham et al., 2020).
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water bodies, and so on.
We find clear evidence of strategic placement. Districts closer to coal deposits, and with more

proximate water sources, receive significantly larger shares of state capacity. Conditional on dis-
tance to the nearest deposit, coal deposit area does not influence investment. Districts with higher
elevation and steeper terrain attract less capacity investment, although estimates are noisy.

Having established that geographically suitable districts attract capacity investment, we can
expect that these same districts will be more exposed to power plant pollution either by having
their own plant or by being close to one. This introduces an important source of endogeneity near
power plants whereby exposure is partially determined by the coal-by-wire policy. In contrast,
our exposure measure is arguably exogenous at greater distances since it will be driven by wind
field characteristics and not any placement effect per se.

Columns 3-5 successively illustrate this endogeneity and our solution to it. Each specification
is a cross-sectional regression of cumulative power plant exposure (equation 2) in 2017 on the same
six geography variables with state fixed effects. Column 3 shows a strong correlation between ex-
posure and proximity to coal and water—the same features predicting plant placement in columns
1 and 2. Column 4 disentangles the placement effect by dropping power plant districts altogether,
leaving coefficients to be estimated mainly off of wind-driven exposure. Correlations between ge-
ography and exposure almost entirely vanish. While this approach largely solves our endogeneity
problem, it requires dropping 107 districts. Furthermore, the placement effect may still partially
operate since some plants are sited at district borders (see figure 3A).

Column 5 presents estimates under an alternative approach that addresses both sample size
and border issues. We apply a 50km mask around each power plant, which deletes cell values
GridExposureit (equation 1) within a 50km radius. This accounts for spillover coal-by-wire effects
and drops only the handful of districts smaller than the mask. Coefficients and precision are nearly
equivalent to column 4 and only 27 districts are dropped. We apply this mask throughout our main
analysis and vary the radius in the robustness checks.

Districts face unequal exposure, conditional on geography. Our research design is careful to
account for the natural resource basis for power generation. We control for a range of geographic
determinants of plant placement, including distance to the nearest plant itself. Residual variation
in long-term exposure between districts thus stems from conditionally exogenous differences in
wind-fields and other meteorological characteristics used by HYSPLIT.

The intuition behind our identifying variation is well captured by the experience of two dis-
tricts on the western coast of Gujarat. Rajkot and Junagadh are the 4th and 7th most populous
districts in the state, respectively. They are also neighbours. Neither have their own power plant
but both are approximately 150km from the nearest plant cluster (the Salya and Sikka Power Sta-
tions) located in nearby Jamnagar district. All three districts are thus expected to share similar ge-
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Figure 3: Wind-field driven downstream emission exposure and pollution.
(A) An illustration of the downstream emission dispersion ‘plume’ estimated by the HYSPLIT model from six power
plants located on the western coast of Gujarat for April 2016 (inset from Fig.2). (B) District-level annual mean downstream
exposure concentration from HYSPLIT model for 2016. (C) District-level annual mean SO2 pollution concentration for
2016. (D) District-level annual mean NO2 pollution concentration for 2016.

ographic characteristics. Figure 3A highlights these districts and shows particle trajectories from
each plant in April 2016. Despite their similar development, proximity, and geography, Rajkot and
Junagadh face drastically different exposure to the nearby power plants. Rajkot is directly in the
exposure path of the Jamnagar plant cluster as well as that of the Mundra Ultra Mega Power Plant
in further-away Kutch district (green). Junagadh is completely non-exposed. These differences in
exposure arise even when aggregating at the annual level (Figure 3B). It is this variation that we
exploit to estimate the causal impact of power plant exposure.
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Table 2: Comparison of Predictive Accuracy: log(SO2)

Within R-sq. Relevance Tests

Kleibergen and
Paap (2006)

Montiel Olea and
Pflueger (2013)

(1) (2) (3)

HYSPLIT
Capacity-weighted Exposure (1990-) 0.350 50.955 49.214

Wind Cone
Capacity-weighted Cone (1990-) 0.231 16.253 15.242
Periods overlapped by cone (1990-) 0.208 11.672 12.345

Note: each row represents a regression of log(SO2) on exposure, controls for plant placement, and state-year fixed effects.
Controls include: district area, distance to nearest river, water area, distance to coal deposit, coal area, distance to nearest
power plant, elevation, slope, temperature, and nightlight intensity. The first row is clustered at the plume level and the
remainder at the state level.

Districts face unequal pollution, conditional on geography. HYSPLIT maps the trajectory of
tracer particles as opposed to actual air pollutants. But since tracer particles largely follow wind-
fields, we expect historically exposed downwind districts to also experience worse air quality
today compared to upstream districts that avoided exposure.

The intuition can again be illustrated by the experiences of Rajkot and Junagadh districts. Re-
call that they are neighbors and equi-distant from the nearest power plant, but only Rajkot is in the
downwind exposure path. Figure 3C and D shows gridded annual SO2 and NO2 concentrations,
respectively, in 2016. The worst observed air quality is in the model-generated downwind exposure
path, which includes Rajkot. In contrast, upwind districts like Junagadh, which are not exposed
to power plants, experience relatively lower pollution levels.

This visual evidence implies 1) that our model-driven exposure measure is a strong predictor
of actual observed pollution and; 2) that pollution constitutes a key mechanism through which
differential exposure translates into health disparities. We test the first claim next, and the second
in section 4.

Dispersion model-based exposure predicts pollution better than conventional measures. We
demonstrate the advantage of our exposure measure by comparing how accurately it predicts
pollution compared to the standard wind direction instrument from the literature. To replicate
the standard measure, we obtain monthly gridded wind direction from 1990-2017 at 0.1 × 0.1◦

resolution from the ERA5 satellite product.6 First, we extract the wind direction at the pixel of each
power plant. Second, we construct a quarter-circle with radius 100km centered on the vector. This

6We use the ERA5-Land monthly averaged data obtained from the Copernicus Climate Change Service (C3S)
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cone defines the exposure area of the power plant. Third, we distribute plant capacity over districts
spanned by the cone, weighted by overlap fraction, and then sum over plants. This produces a
measure of district exposure to power plants loosely resembling our HYSPLIT-generated measure,
but the lack of a dispersion model necessitates strict assumptions about plume shape and diffusion
characteristics. Lastly, we accumulate the capacity-weighted cones from 1990 to produce a long-
term exposure measure for comparison. We also compute total months in which a district touches
an exposure cone as an alternative measure.

Table 2 provides formal diagnostics of predictive performance. The HYSPLIT measure is ad-
justed to a 1990 start date for consistency. Each row represents a regression of log SO2 on exposure,
controls for plant placement described in table 1, and state-year fixed effects. Columns describe
performance metrics. Our main diagnostics derive from two variants of the first stage F-statistic.
The Kleibergen and Paap Wald statistic is a heteroskedasticity-robust analog of the first stage F-
statistic (Kleibergen and Paap, 2006). Olea and Pflueger (2013) adjust this test to accommodate
clustered panel data, which suits our setting. Their simulations imply a critical value of 23 com-
pared to the standard rule-of-thumb level of 10 suggested by Staiger and Stock (1994).

Column 1 shows the within-R2 from each regression. Our model-based measure explains over
50% more pollution variation compared to the cone-based measure. A more relevant test of per-
formance is whether the parameter mapping exposure to pollution is weakly identified. Column
2 shows heteroskedastic-robust F-statistics. Values range from 12-16 for cone-based measures
whereas our measure is three times larger. Although all exceed 10, it should be noted that this
rule-of-thumb assumes a homoskedastic setting (Staiger and Stock, 1994). In column 3, where
the test and critical value were designed for the same setting, our measure is strongly relevant
for predicting pollution and exceeds the critical value (=23) by a wide margin. By contrast, both
cone-based measures under-perform and are deemed weak predictors by the test.

The equivalent diagnostics for NO2 pollution are provided in Appendix table A1. The F-
statistics for our HYSPLT-based exposure measure is over 6 times that of the cone-based measure.

3.2 Empirical Strategy

Main Specification. Our empirical strategy generalizes the experiences of Rajkot and Junagadh
discussed in the previous section. We compare health outcomes across districts with different
historic exposures to power plants, controlling for state fixed effects and various plant placement
determinants. We do this for three separate periods several years apart. Thus, our estimation
strategy exploits cross-sectional variation, giving rise to plausible control groups for historically
exposed districts: other districts within the same state sharing the same geographic characteristics,
located at equal distance to power plants, but historically less exposed to these plants due to
plausibly random differences in their wind fields.
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We estimate the following specification on three stacked cross-sections:

Mortalitydt = β1CmlExposuredt + β2Xdt + γst + µdt, (3)

where Mortalitydt is either neo-natal, infant, or child deaths per 1000 live births in district d during
cross-section t ∈ {2000, 2007, 2017}. CmlExposuredt denotes the amount of cumulative exposure
to all upwind coal power plants in the past three decades (i.e. between t− 30 and t) in district d.
Xdt is a vector of fixed covariates determining plant placement described in table 1. The majority
of covariates are constant in each t (i.e. slope, distance to nearest coal deposit) except for distance
to nearest power plant, which changes as new plants are constructed. State-year fixed effects, γst,
are crucial for ensuring that cross-district comparisons are made within states separately in each
period. Without the interaction of year fixed effects, the identifying variation would conflate long-
and short-term variation.

The coefficient of interest, β1, captures the modern-day health impacts of district d being sit-
uated downwind from historic power plants and therefore being continuously exposed to worse
air quality for three decades. Whereas location-by-time fixed effects typically identify short-term
deviations, in our case β1 represents the average of three separate cross-sectional comparisons.

Threats to Identification. Our main identifying assumption is that historic exposure to power
plant emissions is orthogonal to other correlates of current health outcomes. Although we cannot
test this assumption directly, we provide several pieces of corroborating evidence. First, the insti-
tutional context demonstrates a natural resource basis for plant placement rather than a decision
tied to pre-existing health or economic trends. Second, we test for pre-trends directly and show
that, in the absence of a power plant, districts show no evidence of a pollution trend. Third, we
rule out adaptation and endogenous sorting as alternative mechanisms.

Standard Error Clustering. With each simulated “puff” from the dispersion model, gridded expo-
sure values are spatially correlated across cells through unobserved physical formulas governing
gas movement. This correlation persists when aggregating exposure to the district level. The ideal
solution is to cluster standard errors at the plume level, which allows residual correlation across
districts and over time within plume boundaries.

We implement a novel method that demarcates plumes using unsupervised machine learning.
We first run a k-means clustering algorithm on each exposure grid (equation 1) to partition cells
into groups. The algorithm identifies subgroups, which we call plumes, in the raster within which
exposure values are as similar as possible according to a euclidean distance metric (MacQueen et
al., 1967). We then assign a common cluster ID to districts spanned by the same plume. Districts
spanned by multiple plumes are assigned the one with the highest overlap fraction.
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Table 3: Reduced Form: Long Term Impact of Historic Exposure on Mortality

Neo-Natal Infant Child

(1) (2) (3)

Capacity-weighted 0.583∗∗∗ 0.883∗∗∗ 1.284∗∗∗

Exposure (0.191) (0.301) (0.387)

Controls Yes Yes Yes

Y Mean 29.306 46.897 59.020
X SD 0.454 0.457 0.454
State × Year FEs X X X
Clustering Plume Plume Plume
N 1784 1792 1786
R2 0.810 0.828 0.854
∗ p < .1, ∗∗ p < .05, ∗∗∗ p <.01. Data are at the district-annual level for 2000, 2007, and 2017. Mortality is measured per
1000 live births. Exposure is cumulative over 30 years, includes a 50km mask, and standardized. All specifications include
controls for: district area, distance to nearest river, water area, distance to coal deposit, coal area, distance to nearest power
plant, elevation, slope, temperature, and nightlight intensity.

The advantage of this approach is that all cells and districts are spanned by a plume. The
limitation is that the researcher pre-sets the number of plumes; we use 25. We test a different
plume-demarcation approach in the robustness checks that relies on percentile based cutoffs.

4 Results

We present four main results about the health impacts long-term exposure to coal power plants.
First, districts historically exposed to more power plant pollution over three decades experience
higher present day mortality. Second, worse air quality in exposed districts is the key mecha-
nism driving additional deaths. Third, negative health effects of power plant exposure are more
pronounced in urban districts. Lastly, exposure in-utero is the most critical period influencing
present-day mortality. Section 5 shows a range of robustness tests as well as evidence ruling out
two competing explanations for our findings.

4.1 Historically Exposed Districts Experience Higher Mortality

Stacked Cross-Section Results. Table 3 shows the impacts of historic exposure on neo-natal, in-
fant, and child mortality. Neo-natal mortality is defined as death before 28 days old, infant mor-
tality as death before one years old, and child mortality before five years old. The state-by-year
fixed effects ensure estimates are based off of three separate cross-sectional comparisons in 2000,
2007, and 2017. CmlExposuredt is standardized for ease of interpretation: a one unit increase in the
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independent variable corresponds to a one standard deviation increase in cumulative capacity-
weighted exposure to power plants.

Historic exposure to coal power plants significantly increases present-day mortality. Column
1 shows that districts cumulatively exposed to an additional standard deviation of power plant
emissions over three decades experience 0.6 more neonatal deaths per 1000 births, representing
2.0% of the mean. The equivalent increase for infant and child mortality is 1.9% (column 2) and
2.2% (column 3), respectively. All three estimates are statistically significant at 1%.

To the best of our knowledge, there are no other estimates of the long-term mortality impacts
of coal power plants to which we can compare our results. However, we can provide at least two
sanity checks on whether the magnitude of our estimates are reasonable. First, we transform our
long-term estimates into analogous short-term estimates, for which there is an ample evidence
base for comparison. Barrows et al. (2019) find that a 1 GW increase in yearly wind-driven power
plant exposure causes 2.9 additional infant deaths per 1000 live births across Indian districts7.
Here, the equivalent annual impact based on the estimate in column 2 is 12.8 additional infant
deaths per year8. The discrepancy may be explained by differences in study period and, more
importantly, in the construction of exposure.

Second, we calculate how historic power plant exposure contributes to India’s mortality trend.
Average district-level neonatal mortality declined from 36 to 22 deaths per 1000 live births between
2000-17. At the same time, the average district faced a 0.3 GW (or, 0.7 standard deviation) historical
exposure to power plants. Table 3 column 1 implies that this led to 0.4 (= 0.7× 0.583) additional
deaths, suggesting that the mortality decline in the average Indian district suffered a 3 percent
(= 0.4/14) setback due to historic power plant exposure.

4.2 Pollution is the Key Mechanism

Pollution pre-trends. Since wind characteristics drive our dispersion model, it is natural to pre-
sume that highly exposed districts also experience worse air quality due to their downwind orien-
tation towards power plants. Visual evidence from districts differentially exposed to power plants
in Western Gujarat corroborates this (Figure 3C,D).

We establish that pollution is a key mechanism linking power plant exposure to health by first
testing for pre-trends. Figure A2, which we used previously to demonstrate pollution reduction
during plant end-of-life, also shows no evidence of pre-trends. The date of commissioning is

7Barrows et al. (2019) report that 1 standard deviation of exposure increases infant mortality by 0.8. The standard
deviation of downwind exposure reported in their summary statistics is 0.274, implying that 1 GW causes 0.8/0.274=2.9
infant deaths per 1000 live births.

8Column 2 implies that 1 SD of exposure (=0.457 GW) causes 0.883 additional present-day infant deaths. Thus, 1 GW of
exposure causes 0.883/0.457=1.93 additional deaths. This implies 1.93/30=0.064 deaths per thousand live births for every
1GW/year. Given 200GW of installed capacity across India, this implies roughly 200*0.064=12.8 additional infant deaths
per 1000 live births per year.
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Table 4: Impact of Historic Exposure on Log Pollution

(1) (2) (3)
SO2 NO2 PM2.5

Capacity-weighted 0.025∗∗∗ 0.010∗∗∗ 0.480
Exposure (0.003) (0.001) (0.338)

Controls Yes Yes Yes

Y Mean 0.052 0.063 43.528
X SD 0.461 0.461 0.461
State × Year FEs X X X
Clustering Plume Plume Plume
N 1830 1830 1830
R2 0.734 0.863 0.885
∗ p < .1, ∗∗ p < .05, ∗∗∗ p <.01. Data are at the district-annual level for 2000, 2007, and 2017. SO2 and NO2 are measured
in Dobson Units (1 DU= 2.69× 1016 molecules/cm2). PM2.5 is measured in µg/m3. Exposure is cumulative over thirty
years, includes a 50km mask, and standardized. All specifications include controls for: district area, distance to nearest
river, distance to coal deposit, distance to nearest power plant, elevation, slope, temperature, and nightlight intensity.

the omitted group. Coefficient estimates 1-5 years prior to plant commissioning are statistically
indistinguishable from zero, implying that the timing of plant opening is exogenous to unobserved
determinants of pollution. If plant placement was correlated with local demand, for example, then
pollution would trend in the direction of district GDP even during the pre-period.

Historic Exposure and Ambient Air Pollution. Table 4 formally tests the pollution mechanism by
estimating equation 3 with pollution as the outcome. There is a large and precise effect of historic
power plant exposure on district-level SO2 and NO2 concentrations. Column 1 shows that a one
standard deviation increase in historic exposure increases present-day SO2 concentrations by 50
percent of the mean. The equivalent increase in present-day NO2 is 16 percent (column 2).

Column 3 shows that PM2.5 concentrations are surprisingly no different between historically
exposed and less-exposed districts. One explanation for the discrepancy is that NO2 and SO2

are known to be associated with fossil fuel combustion whereas coal-fired power plants are not
a major PM2.5 source in India. Recent source apportionment studies show that coal-fired power
plants account for 30 percent and 50 percent of India’s NO2 and SO2 emissions, respectively (Lu
and Streets, 2012; Lu et al., 2013), but just seven percent of PM2.5 emissions (Venkataraman et al.,
2018). Cross-district variation in PM2.5 is likely too noisy to detect the impact of power plants.

4.3 Health Effects are More Pronounced in Urban Areas

Our main results represent an average across Indian districts. An important question is whether
urban form moderates the relationship between historic power plant exposure and early-life mor-
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Table 5: Heterogeneity
Mortality Pollution

(1) (2) (3) (4) (5) (6)
Neonatal Infant Child SO2 NO2 PM2.5

Capacity-weighted 0.512∗∗ 0.762∗∗ 1.131∗∗∗ 0.270∗∗∗ 0.115∗∗∗ 0.003
Exposure (0.196) (0.306) (0.393) (0.033) (0.008) (0.007)

Capacity-weighted 0.641 1.320∗ 1.868∗∗ 0.075 -0.006 -0.015
Exposure × Urban (=1) (0.436) (0.701) (0.851) (0.062) (0.022) (0.020)

Urban (=1) -0.828∗∗ -1.407∗∗ -1.792∗∗ -0.049 -0.035 -0.052∗∗∗

(0.363) (0.560) (0.684) (0.037) (0.022) (0.019)

Controls Yes Yes Yes Yes Yes Yes

X SD 0.454 0.457 0.454 0.461 0.461 0.461
State × Year FEs X X X X X X
Clustering Plume Plume Plume Plume Plume Plume
N 1784 1792 1786 1830 1830 1830
R2 0.809 0.827 0.853 0.678 0.860 0.911
∗ p < .1, ∗∗ p < .05, ∗∗∗ p <.01. Data are at the district-annual level for 2000, 2007, and 2017. Mortality is measured per
1000 live births. SO2 and NO2 are measured in Dobson Units (1 DU= 2.69× 1016 molecules/cm2). PM2.5 is measured in
µg/m3. Exposure is cumulative over thirty years, includes a 50km mask, and standardized. Urban (=1) is a dummy for
whether more than half the district population is urban. All specifications include controls for: district area, distance to
nearest river, water area, distance to coal deposit, coal area, distance to nearest power plant, elevation, slope, temperature,
and nightlight intensity.

tality. This heterogeneity is especially important in India, home to some of the most population
dense cities in the world. We investigate this question by documenting whether urban and rural
districts experience different mortality outcomes from the same level of exposure to power plants.

We estimate our main specification (equation 3) with an interaction dummy for urban districts,
equal to one if more than half the population is urban. Many other confounding differences be-
tween urban and rural districts are accounted for by our geography and distance-to-plant controls.
The interaction term thus identifies heterogeneity by population exposure holding other agglom-
eration effects constant.

Table 5 presents our heterogeneity results. Columns 1-3 show that the effect of power plant ex-
posure on early-life mortality is more pronounced in urban districts. The same level of exposure
triggers 1.3 and 1.9 more infant and child deaths per 1000 live births, respectively, in urban dis-
tricts compared to rural ones. To put this in perspective, urban non-exposed districts are healthier
than their rural counterparts (third row), perhaps because of higher incomes and better health
care delivery in cities. Long-term exposure to power plants almost entirely erases this “urban
advantage”.

Differences in population exposure is the most likely mechanism driving heterogeneity in
columns 1-3. If an urban and rural district are equidistant to a power plant and face the same
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Figure 4: Impact of historic coal expansion phases
Note: y-axis is mean exposure within the time intervals corresponding to salient policy driven coal power expansion
phases. Each panel shows coefficient estimates on mean exposure in the respective time intervals from five different
regressions. Exposure includes a 50km mask and is standardized. All specifications include controls for: district area,
distance to nearest river, distance to coal deposit, distance to nearest power plant, elevation, slope, night lights, rainfall,
and temperature.

pollution exposure, the urban district will still experience worse mortality because higher popula-
tion density implies greater population exposure.

We verify this mechanism by ruling out one remaining contender: differential pollution effects.
If higher mortality in urban districts were driven by higher pollution in urban districts, then we
should see a positive coefficient on the interaction, with pollution as the outcome. This is unlikely
since our dispersion model is powered by wind and other meteorological characteristics, such that
power plant pollution is equally likely to land in urban versus rural districts. The null effects of
the interaction term in Columns 4-6 confirm this hypothesis. Urban form moderates health effects
through differential population exposure, not pollution.
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4.4 In-utero Exposure and the Period of Private Power Plant Expansion are the
Most Critical

We have shown that districts historically exposed to power plants over five decades experience
significantly higher present-day neonatal, infant, and child mortality. A natural question is: at
what point during this historical period is exposure most critical for determining current health
outcomes? We answer this by unraveling historic cumulative exposure across distinct phases of
policy driven growth in coal fired power plants.

We decompose cumulative exposure in equation 3 into multiple time bins to investigate persis-
tence. The bins spans four distinct time periods marked by policy changes influencing the growth
of power generators in India. In addition, a bin corresponding to the most recent year (2017) is in-
cluded, this is also the contemporaneous year for mortality and pollution outcome measures. The
contemporaneous period is also the period of in-utero exposure for 2017 mortality data. Cumula-
tive exposure is converted to a per-year average (i.e. total exposure divided by number of years in
the bin) for consistent interpretation. All fixed effects and controls are the same as equation 3.

Figure 4 shows the decomposition with multiple outcomes. There are four noteworthy results.
First, exposure in-utero is a critical period for influencing infant survival in the first 28 days (neo-
natal mortality) (Panel A), first month (infant mortality) (Panel B), and under-five years mortality
(Panel C).

Second, the decomposition along the power plant expansion phases show that the period of
growth dominated by private independent power producers (1992-2005), maintains a significant
persistent influence on neo-natal, infant, and under-five mortality in 2017. This is the period fol-
lowing deregulation of power generation for private participation (1991 onward). Exposure dur-
ing other historic periods shows no persistence on present-day mortality outcomes.

Third, the decomposition shows that the contemporaneous year and all the historic exposure
bins influence the present day SO2 (Panel D) and NO2 pollution (Panel E) to varying degrees.
The historic persistent effect implies that sites of power plant construction in the past continues
to influence the present-day plant placements, and through this channel influences the current
year cross sectional variation in power plant pollution. Notably, the large effects of the 1975-91
period on current period power-plant pollution indicates that the geographic determinants of coal
pit-head siting of plants continues to influence placement of new power capacity within close
proximity to the older plants, creating spatially concentrated clusters of coal power generators.

Jointly reading the time period decomposition of mortality effects and pollution effects, we can
infer that the present-day mortality outcome is likely influenced the most by power plant clusters
that where constructed during the growth phase dominated by privately owned power plants
between 1991 and 2005.

Lastly, the decomposition shows no trend when economic activity, measured by nightlight
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Table 6: Robustness Checks
(1) (2) (3) (4) (5)

Capacity-weighted Exposure 0.618∗∗∗ 1.237∗∗∗ 0.576∗∗∗ 0.583∗∗ 0.790
(0.223) (0.366) (0.197) (0.233) (1.325)

Dataset GBD GBD GBD GBD NFHS
Mask 50km None 30km 50km 50km
Plant Districts Yes No Yes Yes Yes
Y Mean 29.306 29.267 29.161 29.306 25.593
X SD 0.454 0.423 0.454 0.454 0.495
State FEs X X
State × Time Trend X
State × Year FEs X X X
Clustering Plume Plume Plume Pctile Plume
N 1784 1613 1834 1784 503
∗ p < .1, ∗∗ p < .05, ∗∗∗ p <.01. Data in Columns 1-5 are from the Global Burden of Disease study used throughout the
analysis. Column 5 is from the NFHS-IV survey. Mask refers to a radius around each plant within with cell values are
omitted. Specifications with plant districts include the district with the power plant in the sample. Exposure is cumulative
over thirty years and then standardized. All specifications include controls for: district area, distance to nearest river,
distance to coal deposit, distance to nearest power plant, elevation, slope, temperature, and nightlight intensity.

intensity, is the outcome (Panel F). This helps rule out adaptation as an alternative mechanism
(we show this more formally in section 5.2). If capacity expansions in the previous year triggered
exposed districts to invest in adaptive infrastructure, then we would expect these districts to be
more developed than non-exposed districts. The null effect for all the time period bins in Panel
F shows that this is not the case. We would also expect no difference in present-day mortality
if exposed districts adapted. The positive and significant in-utero effect and private expansion
period effect shows that this is also not the case.

5 Ruling Out Alternative Explanations

Our empirical strategy carefully assigns districts to treatment and comparison groups that plausi-
bly differ only in their wind-fields relative to thermal power plants. This section first establishes
the credibility of our main estimates through a range of robustness checks and then rules out two
alternative mechanisms. We show robustness estimates for neonatal mortality to reduce the num-
ber of specifications to report.

5.1 Robustness Checks

Robustness to State-Time Trends. Table 6 column 1 shows results with state fixed effects and a lin-
ear state-time trend. Even though time variation is exploited, the exposure coefficient is very simi-
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lar to our main specification with state-by-year fixed effects. This is likely because our distance-to-
plant control and the state-time trend captures endogenous capacity additions over time, leaving
column 1 to be identified off of mainly cross-sectional variation as in our main estimates.

Removing Power Plant Affected Areas. Our 50km mask helps isolate exposure to power plant
pollution from the impact of power plant placement per se (see section 3.1). Nevertheless, we show
results from two alternative specifications that separate placement and exposure. Rather than
applying a mask, column 2 drops power plant districts altogether. Neonatal mortality in these
emissions-exposed districts, but without power plants themselves, remains significantly higher
than non-exposed districts. The point estimate nearly doubles in magnitude.

Column 3 replicates our main specification but reduces the mask radius to 30km. Estimates
are virtually unchanged. The number of observations slightly increases since districts larger than
a 30km master but smaller than a 50km mask are added to the sample.

Alternative Clustering. Throughout the analysis, errors are clustered at the plume level, where
plumes are demarcated through a k-means algorithm. Although entirely data-driven, this ap-
proach requires arbitrarily pre-setting the number of plumes. We test robustness to an alternative
clustering approach based on percentile-based cutoffs. A plume is defined as the union of cells in
the 95th percentile of exposure values (red cells in Figure A1). A common cluster ID is assigned
to districts spanned by the same plume. Districts not covered by a plume retain their district ID
as the cluster. This is the main caveat since the unobserved meteorology governing dispersion is
obviously insensitive to borders.

Our results are robust to clustering on this alternative plume definition. Standard errors in
column 4 are slightly higher than our main estimates but the coefficient retains significance at 5
percent.

Estimates from an Alternative Dataset. The GBD mortality data used in this paper compiles
multiple sources, namely the population census, civil registration system, and large household
surveys (Dandona et al., 2020). We replicate our results on one of these intermediate datasets
independently to verify that our estimates are not an artifact of the secondary data generated by
Dandona et al. (2020).

We test our results on the 2015-16 NHFS-IV survey, which covers nearly 600,000 households
across 29 states and is representative at the district level. The birth history module asks eligible
women about all births in the past, including survival and age at death. We use this to compute
district-level neonatal mortality. Table 6 column 5 replicates our main estimating equation using
the 2014 birth histories. Since this is the year prior to the survey, birth history responses should
suffer from the least recall bias.
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Table 7: Adaptation to Long Term Power Plant Exposure
Adaptation Sorting

(1) (2) (3) (4) (5) (6)
Literacy Poverty Consump. Service Lbr Immigration Emigration

Capacity-weighted Exposure 0.009 0.014∗ -162.579 -0.057 -0.215 1.051
(0.007) (0.007) (181.490) (0.052) (0.233) (0.654)

Controls Yes Yes Yes Yes Yes Yes

Data Source Census SECC SECC EC Census D3 IHDS
Year 2011 2012 2012 2013 2011 2012
Y Mean 0.618 0.331 17838.204 0.759 5.069 23.088
State FEs X X X X X X
Clustering Plume Plume Plume Plume Plume Plume
N 599 599 599 598 605 330
R2 0.588 0.707 0.727 0.692 0.497 0.519
∗ p < .1, ∗∗ p < .05, ∗∗∗ p <.01. Each column represents a cross-sectional regression from a variety of data sources and
years. Columns 1-6 are cross-sectional regressions at the district level. Column 1 is the district literacy share. Column 2 is
the mean village poverty rate in a district. Column 3 is mean per capita consumption across urban towns and rural villages.
Columns 4 and 5 are log of total employment in the manufacturing and service sector plus 1, respectively. Column 6 is log
of total light intensity across all pixels in a district. Column 7 is the district population share consisting of in-migrants who
moved with their whole family. Exposure is cumulative over thirty years, includes a 50km mask, and standardized. All
specifications include controls for: All specifications include controls for: temperature, rainfall, nightlights, and distance to
nearest power plant.

We continue to find a positive neonatal mortality effect using NFHS-IV, although precision
is lost. Note, however, that the same parameter in the 2017 cross section of our main analysis
(column 7 table A2), the closest period for comparison, is also imprecisely estimated. We posited
that pollution reduction from offlining vintage plants can explain the imprecision.

5.2 Adaptation and Endogenous Sorting

Differential Development. Our reduced form estimates of the impact of historic exposure to
power plants are net of any adaptation that may have occurred along the way. We partially ruled
out this mechanism in Figure 4D, which shows that changes in power plant exposure in various
historical periods generated no persistent changes in economic activity from that point on.

We corroborate this evidence further with four additional measures of economic development
from multiple data sources. We replicate equation 3 for the year in which each development indi-
cator is provided. All measures are provided through the SHRUG database, and we list underlying
data sources in the Table 7 footer.

We find little evidence of differential development. Table 7 columns 1-4 show that districts
historically exposed to power plants do not have higher present-day literacy rates, higher con-
sumption per-capita, nor greater service sector employment than less exposed districts. Exposed
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districts are slightly poorer in the long-run (column 2), however the effect is small in magnitude
and weakly significant. Taken together, this evidence bolsters our claim that the long-term effects
of power plant exposure on health operate through pollution and not differential development.

Selective Migration. Endogenous sorting presents another competing explanation for our find-
ings. If individuals sort on health or wealth in response to power plant exposure, then our mor-
tality estimates reflect both a pollution and a migration effect. Heblich et al. (2016) show path-
dependent sorting following power plant exposure in early 19th century England. We expect little
bias from sorting in India, however, due to high socio-economic barriers to migration and histori-
cally low migration rates (Munshi and Rosenzweig, 2016).

The 2011 Census D3 tables completely characterize the migrant population in each district
of India. We compute the immigrant share of the district population having arrived with their
whole family and use it as an outcome in equation 3. If historic exposure drives families to move
into cleaner districts, then we expect β1 < 0 (i.e. less migration into dirty districts compared to
clean ones). Table 7 column 5 shows no evidence of selective migration. Historic power plant
exposure does not generate any statistically distinguishable differences in present-day migrant
shares compared to less-exposed districts.

Since the Census D3 tables do not disclose migrant origin, we measure whether exposed dis-
tricts experience greater out-migration using the IHDS 2012 survey. The survey covers 42,000
households across all states. We define the district migration rate as the proportion of households
in a district having at least one migrant that has been away for over six months. A limitation is
that we cannot observe permanent out-migration of the whole family. The result in Table 7 column
6 provides additional evidence against the endogenous sorting mechanism. Historically exposed
districts do not feature relatively higher present-day out-migration rates.

Overall, these results imply that historic exposure does not trigger path-dependent sorting.
This rules out endogenous migration as an alternative explanation and once again supports our
claim that pollution is the key mechanism driving health disparities between exposed and non-
exposed districts.

6 Conclusion

Coal, which is being phased out of the energy system across the developed world, remains a
dominant fuel for electricity generation in many developing countries. In India, coal-fired power
plants generated 63% of total electricity in 2016 (Shearer et al., 2017). Neighboring China similarly
depends on coal for 60% of its electricity. Although electricity access can deliver salient economic
benefits, this paper focuses on environmental costs. Until now, previous studies have documented
short-term negative health effects from exposure to coal power plants using monthly or annual
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panel data. In contrast, we provide novel, long-term evidence on the impact of historic exposure
to coal-fired power plants in India over three decades.

We find that districts historically exposed to more power plant emissions, accumulating over
thirty years, experience higher present-day neonatal, infant, and child mortality. To arrive at this
result, we developed a novel method for measuring historic emissions exposure using a disper-
sion model that maps wind-driven particle trajectories from every power plant in India. This
allows measurement of power plant exposure, and health effects, manifesting in districts with-
out power plants, and potentially hundreds of kilometers away from one. Importantly, we verify
that our mortality estimates are driven by higher local pollution in historically exposed districts,
and not through differential adaptation or sorting. Lastly, we unravel historic exposure and find
that present-day mortality is most sensitive to plant clusters formed during 1992-2005, the period
during which the electricity market opened to private generation companies.

In terms of magnitudes, our neonatal estimate implies an average of 15 additional neonatal
lives lost in districts facing higher historic exposure to power plants9. Since all districts are po-
tentially exposed, according to our definition, this amounts to 15×640=9,600 additional deaths on
account of historic power plant exposure. In terms of costs, this translates to approximately $USD
3 billion using the value of a statistical life estimate designed specifically for India by Gulati et al.
(2021)10.

9The coefficient in 3 column 1 implies 1 SD (=0.457 GW) of historic exposure increases neonatal mortality by 0.583 deaths
per 1000 live births. In our data, average historic exposure is 0.323 GW, or 0.323/0.457=0.71 SD, and average number of
live births is 36,524. Thus, the average lives lost per district is 0.71*0.583*36.524=15.1

10Gulati et al. (2021) estimate a VSL of $USD 312,663 for India in 2013. Details in the Materials and Methods section of
their paper.

29



A Appendix

A.1 Appendix Figures

Figure A1: Plume Clusters
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Figure A2: Coal power-plant impact on district air-pollution

● ● ●
●

●
●

●
● ●

●
●

●
●

●
●

●

●

● ●

●

●

●

●
● ●

●

● ●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●
●

●
●

●

● ● ●
●

●
●

●

●

●

●
●

●
● ●

● ●

●
●

●

●

●
●

● ●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

● ●
●

●
●

●

●
●

●

●

●

●
●

● ● ●
●

●

●
●

● ●
● ●

●

● ●

●

Plant end of life
Plant

Construction

Particulate Matter (AOD)

Nitrogen Dioxide (NO2)

Sulfur Dioxide (SO2)

−10 0 10 20 30

−10 0 10 20 30

−10 0 10 20 30

−10%

0%

10%

20%

−10.0%

−5.0%

0.0%

5.0%

−7.5%

−5.0%

−2.5%

0.0%

2.5%

Years Since Coal Power−Plant Constructed

C
ha

ng
e 

in
 D

is
tr

ic
t A

ir 
P

ol
lu

tio
n 

(%
)

We construct a data panel where each power-plant opening is treated as a new event. Districts with multiple plant
opening events are treated independently by creating district-event-year ids for each district and stacked to create a panel.
With this panel, the time-impact of coal power-plant on district air-pollution (SO2, NO2, and Particulate matter) is
estimated using a two-way fixed-effects regression specification of the form:
Log(Yit) = αi + γt + Σ30

τ=−10βτ D(τ) + xit + εit. Where Yit are the district pollution outcomes, and the coefficients of
interest plotted here are βτ on the elapsed event-time dummies D(τ) for τ = −10 to 30 years. We also include the existing
installed power-plant capacity xit in the specification as control. Error-bars represent 95% confidence.
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A.2 Wind-field Emission Dispersion Instrument

Table A1: Comparison of Predictive Accuracy: log(NO2)

Within R-sq. Relevance Tests

Kleibergen and
Paap (2006)

Montiel Olea and
Pflueger (2013)

(1) (2) (3)

HYSPLIT
Capacity-weighted Exposure (1990-) 0.598 145.209 146.822

Wind Cone
Capacity-weighted Cone (1990-) 0.542 22.202 22.791
Periods overlapped by cone (1990-) 0.545 43.036 41.748

Note: each row represents a regression of log(NO2) on exposure, controls for plant placement, and state-year fixed effects.
Controls include: district area, distance to nearest river, water area, distance to coal deposit, coal area, distance to nearest
power plant, elevation, slope, temperature, and nightlight intensity. The first row is clustered at the plume level and the
remainder at the state level.
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A.3 Cross-Sections

Table A2: Cross-sectional Long Term Impact of Historic Exposure on Mortality
2000 2007 2017

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Neo-natal Infant Child Neo-natal Infant Child Neo-natal Infant Child

Capacity-weighted 0.772 1.315 2.681 1.194∗∗∗ 1.842∗∗∗ 2.589∗∗∗ 0.313 0.423 0.572
Exposure (0.721) (1.185) (1.600) (0.356) (0.547) (0.694) (0.205) (0.317) (0.379)

Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes

Y Mean 36.681 60.658 79.895 28.711 45.569 56.249 22.422 34.316 40.696
X SD 0.229 0.229 0.229 0.350 0.351 0.350 0.622 0.626 0.621
State FEs X X X X X X X X X
N 598 600 598 597 599 597 589 593 591
Clustering Plume Plume Plume Plume Plume Plume Plume Plume Plume
R2 0.762 0.768 0.795 0.745 0.756 0.772 0.728 0.745 0.748
∗ p < .1, ∗∗ p < .05, ∗∗∗ p <.01. Data are at the district-annual level for 2000, 2007, and 2017. Mortality measured per 1000
live births. Exposure is cumulated over thirty years, includes a 50km mask, and standardized. All specifications include
controls for: district area, distance to nearest river, water area, distance to coal deposit, coal area, distance to nearest power
plant, elevation, slope, ruggedness, temperature, and nightlight intensity.

Table A3: Cross-sectional Impact of Historic Exposure on Pollution
2000 2007 2017

(1) (2) (3) (4) (5) (6) (7) (8) (9)
SO2 NO2 PM2.5 SO2 NO2 PM2.5 SO2 NO2 PM2.5

Capacity-weighted 0.023∗∗∗ 0.011∗∗∗ -0.295 0.022∗∗∗ 0.009∗∗∗ 0.183 0.026∗∗∗ 0.010∗∗∗ 0.588
Exposure (0.006) (0.002) (1.107) (0.002) (0.001) (0.825) (0.004) (0.001) (0.386)

Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes

Y Mean 0.040 0.056 35.155 0.045 0.059 42.320 0.070 0.073 53.235
X SD 0.230 0.230 0.230 0.354 0.354 0.354 0.632 0.632 0.632
State FEs X X X X X X X X X
N 613 613 613 612 612 612 605 605 605
Clustering Plume Plume Plume Plume Plume Plume Plume Plume Plume
R2 0.602 0.858 0.853 0.659 0.850 0.854 0.752 0.853 0.900
∗ p < .1, ∗∗ p < .05, ∗∗∗ p <.01. Data are at the district-annual level for 2000, 2007, and 2017. SO2 and NO2 are measured
in Dobson Units (1 DU= 2.69× 1016 molecules/cm2). PM2.5 is measured in µg/m3. Exposure is cumulative over thirt
years, includes a 50km mask, and standardized. All specifications include controls for: district area, distance to nearest
river, distance to coal deposit, distance to nearest power plant, elevation, slope, ruggedness, temperature, and nightlight
intensity.
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Deschênes, Olivier and Michael Greenstone, “The economic impacts of climate change: evidence
from agricultural output and random fluctuations in weather,” American economic review, 2007,
97 (1), 354–385.

Donkelaar, Aaron Van, Randall V Martin, Michael Brauer, N Christina Hsu, Ralph A Kahn,
Robert C Levy, Alexei Lyapustin, Andrew M Sayer, and David M Winker, “Global estimates of
fine particulate matter using a combined geophysical-statistical method with information from
satellites, models, and monitors,” Environmental science & technology, 2016, 50 (7), 3762–3772.

Draxler, Roland R and GD Hess, “An overview of the HYSPLIT 4 modelling system for trajecto-
ries,” Australian meteorological magazine, 1998, 47 (4), 295–308.

, Barbara Stunder, Glenn Rolph, Ariel Stein, and Albion Taylor, “HYSPLIT4 users’s guide,”
Technical Report 2020.

Druckenmiller, Hannah and Solomon Hsiang, “Accounting for unobservable heterogeneity in
cross section using spatial first differences,” Technical Report, National Bureau of Economic
Research 2018.

Duflo, Esther and Rohini Pande, “Dams,” The Quarterly Journal of Economics, 2007, 122 (2), 601–
646.

Goldsmith-Pinkham, Paul, Isaac Sorkin, and Henry Swift, “Bartik instruments: What, when,
why, and how,” American Economic Review, 2020, 110 (8), 2586–2624.

35



Gulati, Sumeet, Krithi K Karanth, Nguyet Anh Le, and Frederik Noack, “Human casualties are
the dominant cost of human–wildlife conflict in India,” Proceedings of the National Academy of
Sciences, 2021, 118 (8).

Gupta, Aashish and Dean Spears, “Health externalities of India’s expansion of coal plants: Evi-
dence from a national panel of 40,000 households,” Journal of Environmental Economics and Man-
agement, 2017, 86, 262–276.

Guttikunda, Sarath K and Puja Jawahar, “Atmospheric emissions and pollution from the coal-
fired thermal power plants in India,” Atmospheric Environment, 2014, 92, 449–460.

Heblich, Stephan, Alex Trew, and Yanos Zylberberg, “East Side Story: Historical Pollution and
Persistent Neighborhood Sorting,” Discussion Paper Series, School of Economics and Finance
201613, School of Economics and Finance, University of St Andrews November 2016.

Henneman, Lucas R. F., Christine Choirat, Cesunica Ivey, Kevin Cummiskey, and Corwin M.
Zigler, “Characterizing population exposure to coal emissions sources in the United States using
the HyADS model,” Atmospheric Environment, April 2019, 203, 271–280.

, Irene C. Dedoussi, Joan A. Casey, Christine Choirat, Steven R. H. Barrett, and Corwin M.
Zigler, “Comparisons of simple and complex methods for quantifying exposure to individual
point source air pollution emissions,” Journal of Exposure Science & Environmental Epidemiology,
July 2021, 31 (4), 654–663. Bandiera abtest: a Cg type: Nature Research Journals Number: 4
Primary atype: Research Publisher: Nature Publishing Group.

Herrnstadt, Evan, Anthony Heyes, Erich Muehlegger, and Soodeh Saberian, “Air pollution and
criminal activity: Microgeographic evidence from Chicago,” American Economic Journal: Applied
Economics, 2021, 13 (4), 70–100.

International Energy Agency, India Energy Outlook 2021 2021.

Jayachandran, Seema, “Air quality and early-life mortality evidence from Indonesia’s wildfires,”
Journal of Human resources, 2009, 44 (4), 916–954.

Kleibergen, Frank and Richard Paap, “Generalized reduced rank tests using the singular value
decomposition,” Journal of econometrics, 2006, 133 (1), 97–126.

Knittel, Christopher R, Douglas L Miller, and Nicholas J Sanders, “Caution, drivers! Children
present: Traffic, pollution, and infant health,” Review of Economics and Statistics, 2016, 98 (2),
350–366.

36



Komisarow, Sarah and Emily L Pakhtigian, “Are power plant closures a breath of fresh air? Lo-
cal air quality and school absences,” Journal of Environmental Economics and Management, 2022,
p. 102569.

Kuminoff, Nicolai V., V. Kerry Smith, and Christopher Timmins, “The New Economics of Equi-
librium Sorting and Policy Evaluation Using Housing Markets,” Journal of Economic Literature,
December 2013, 51 (4), 1007–62.

Landrigan, Philip J, Richard Fuller, Nereus J R Acosta, Olusoji Adeyi, Robert Arnold, Ni-
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