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S1 Appendix Tables

Table S1: eBird Summary Statistics (2015-2020)

Mean Std. Dev. Obs.

District
Num. Users 109.01 193.91 628
Num. Trips 1671.86 5497.55 628
Coverage (%) 52.88 32.26 628

User
Num. Districts 3.99 7.45 16899
Num. States 1.93 2.21 16899
Num. Year-months 6.41 11.32 16899

User-District-Time
Species Richness 23.39 18.72 173813
Duration (min) 85.51 70.70 173813
Distance (km) 3.06 6.02 173813
Coverage (%) 9.58 16.98 173813

District-Time
Rainfall (mm) 0.34 0.82 21750
Temperature (◦ C) 23.30 7.22 21750
Nightlights (radiance) 2.61 7.28 21750
Coverage (%) 18.89 25.93 21750
Num. Users per District-Yearmonth 8.07 14.60 21750

Note: District variables reflect total eBird activity in a district during the study period. User variables
describe number of locations and time-periods in which the user is active. Variables at the user-district-time
level are means over users’ trips in a district-month. Coverage is measured as the percentage of district cells
traversed by a user on a 10km grid. Remaining covariate details are explained in section 3.
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Table S2: Correlation Between Infrastructure Permits and Nightlights

(1) (2) (3) (4) (5)

Infrastructure (km2) -0.0008 -0.0006 -0.0006 -0.0000 -0.0004
(0.0006) (0.0005) (0.0005) (0.0004) (0.0003)

Infrastructure (t-1) -0.0010 -0.0010∗

(0.0006) (0.0006)

Infrastructure (t-2) 0.0006
(0.0007)

Weather Controls No No Yes Yes Yes

District FEs X X X X X
Year FEs X
State × Year FEs X X X X
Observations 3840 3822 3822 3185 2548
R2 0.993 0.996 0.996 0.997 0.998

Note: Data are at the district-year level. The outcome is log of mean nightlight intensity across gridcells in
a district. The explanatory variable is cumulative forest area approved for deforestation to build infrastruc-
ture. Columns 4 and 5 include lags of infrastructure. Weather controls include temperature and rainfall.
Standard errors clustered by district.

Table S3: Variation in Species Richness Under Various Fixed Effects

1− R2 σε

(1) (2)

District FE 0.825 16.998
District + State-Month + Year FE 0.806 16.798
User + District + State-Month + Year FE 0.515 13.418
User-Year + District + State-Month FE 0.441 12.401

Note: This table summarizes regressions of species richness on sets of fixed effects (rows). Data are at the
user-district-month level. Column 1 reports 1− R2 i.e., the fraction of variation not explained by the fixed
effects. Column 2 is the standard deviation of the residuals (units = number of species).
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Table S4: Impact of Forest Infrastructure on Species Diversity

Main Estimates Sensitivity

(1) (2) (3) (4) (5) (6)

Infrastructure (km2) -0.049∗ -0.121∗∗ -0.121∗∗ -0.105 -0.120∗∗ -0.110∗

(0.027) (0.053) (0.054) (0.062) (0.054) (0.059)

Infrastructure (district j 6= d) 0.232
(Standard Deviations) (0.251)

Non-forest Land Diversion -0.046
(km2) (0.056)

Weather Controls Yes Yes Yes Yes Yes Yes

Behaviour Controls Yes Yes Yes No Yes Yes

General Economic Trends Yes Yes Yes No No Yes

Outcome Mean 23.672 23.748 23.748 23.748 23.748 23.748
Coeff. Equality (p-val) 0.540
User FEs X
User × Year FEs X X X X X
District FEs X X X X X X
State ×Month FEs X X X X X X
Year FEs X
Observations 167258 161902 161902 161896 161896 161896
R2 0.635 0.690 0.690 0.559 0.690 0.690

Note: ∗ p < .1, ∗∗ p < .05, ∗∗∗ p <.01. Columns 1-3 are the same as in Figure 4A. Columns 4-5 successively
add controls. Weather controls include temperature and rainfall. Behaviour controls include: traveling
trips, log duration, log distance, log experience, log group size, and log spatial coverage. General economic
trends are measured by nightlights. Column 6 adds cumulative non-forest land diversion, which is avail-
able only the digital subsample of project proposals. “Coeff. Equality” is the p-value on the test for equality
between the infrastructure and non-land forest diversion coefficients. Standard errors clustered by biome.
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Table S5: Robustness—Spatial Spillovers

(1) (2) (3) (4) (5)

Infrastructure (Standard -0.391∗∗ -0.396∗∗ -0.402∗∗ -0.408∗∗ -0.410∗∗

Deviations) (0.176) (0.173) (0.178) (0.177) (0.182)

Infrastructure (district j -0.137 0.025 0.081 0.399 0.441
6= d) (Standard Deviations) (0.255) (0.473) (0.258) (0.647) (0.421)

Distance Cutoff Neighbors 100km 200km 500km None
User × Year FEs X X X X X
District FEs X X X X X
State ×Month FEs X X X X X
Observations 161896 161896 161896 161896 161896
R2 0.690 0.690 0.690 0.690 0.690

Note: ∗ p < .1, ∗∗ p < .05, ∗∗∗ p <.01. The outcome is mean species richness across user’s trips in a
district-month. All infrastructure variables are standardized for comparability. In all columns, Infrastruc-
ture (row 1) is cumulative area of forest occupied by infrastructure in district d during a year-month. In
column 1, infrastructure in other districts j refers to those adjacent to district d. In column 2, it refers to
cumulative encroachment area in other districts within 100km of the focal district d. In each time period,
In f rastructuredsym is multiplied by a N × N (where N is the number of districts in India) dimensional
weight matrix W with elements wdj = 1/distancedj for districts j within 100km of d and zero otherwise.
Columns 3 and 4 extend the distance cutoff to 200km and 500km, respectively. Column 5 applies the in-
verse distance weight to all districts. Section 5.3.2 elaborates the procedure. All regressions control for:
temperature, rainfall, traveling trips, log nightlights, log duration, log distance, log experience, log group
size, and log spatial coverage. Standard errors clustered by biome.
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Table S6: Tests of Endogenous Sorting

Across-District Within-District

(1) (2) (3) (4)
Num. Users Num. Users Num. Users % District Area

Infrastructure (Standard 0.010 0.010 0.008 -0.007
Deviations) (0.029) (0.029) (0.028) (0.011)

Infrastructure (district -0.023 -0.017 -0.013
j 6= d) (Standard Deviations) (0.020) (0.024) (0.029)

Controls Yes Yes Yes Yes

Data Aggregation District District District District
Distance Cutoff 100km 200km 500km
District FEs X X X X
State ×Month FEs X X X X
Year FEs X X X X
Observations 21256 21256 21256 21256
R2 0.808 0.808 0.808 0.976

Note: ∗ p < .1, ∗∗ p < .05, ∗∗∗ p <.01. Data are aggregated at the district-year-month level. The outcome in
columns 1-3 is log number of users in a district. The outcome in column 4 is % of district grid cells traversed
by the average user. All infrastructure variables are standardized for comparability. Infrastructure (row 1)
is cumulative area of forest occupied by infrastructure in district d during a year-month. In column 1,
infrastructure (district j 6= d) is inverse-distance weighted infrastructure in districts j within 100km of d. In
columns 2 and 3, the distance cutoff is extended to 200km and 500km, respectively. Controls are the same
as the main specification. Experience, duration, distance, group size, and % traveling trips are aggregated
to district means and logged. Standard errors clustered by biome.
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Table S7: Impact of Forest Infrastructure on Species Diversity by Category

(1) (2) (3) (4)

Electricity 0.088 0.090 0.085 0.091
(0.066) (0.066) (0.066) (0.066)

Irrigation -0.105∗ -0.130∗∗ -0.131∗∗ -0.121∗∗

(0.052) (0.049) (0.048) (0.042)

Mining -0.061 -0.059∗∗∗ -0.059∗∗∗ -0.111∗∗∗

(0.035) (0.019) (0.019) (0.021)

Other -0.165 -0.257 -0.254 -0.264
(0.229) (0.215) (0.215) (0.210)

Resettlement -1.100∗∗∗ -0.745∗∗∗ -0.744∗∗∗ -0.728∗∗∗

(0.062) (0.080) (0.078) (0.088)

Transportation -0.265 -0.392∗ -0.393∗ -0.444∗∗

(0.305) (0.181) (0.183) (0.188)

Weather Controls Yes Yes Yes Yes

Behaviour Controls No Yes Yes Yes

General Economic Trends No No Yes Yes

Outcome Mean 23.748 23.748 23.748 23.983
Sample Full Full Full High-Activity
User x Year FEs X X X X
District FEs X X X X
State ×Month FEs X X X X
Observations 161896 161896 161896 150011
R2 0.559 0.690 0.690 0.687

Note: ∗ p < .1, ∗∗ p < .05, ∗∗∗ p <.01. The outcome in all specifications is mean species richness across users’
trips in a district-month. Rows denote cumulative area of infrastructure encroachments by a particular
category in a district-month. Column 1-3 successively add controls. Weather controls include temperature
and rainfall. Behaviour controls include: traveling trips, log duration, log distance, log experience, log
group size, and log spatial coverage. General economic trends is measured by nightlights. Column 3 is the
same as Figure 4B. Column 4 restricts the sample to districts with high eBird usage, measured as districts
with above-median numbers of users, recording above-median trips per user. Standard errors clustered by
biome.
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Table S8: Robustness—Other
(1) (2) (3) (4) (5) (6) (7) (8) (9)
SR SR SR SR SR SR Shannon Simpson SR

Infrastructure -0.118∗∗ -0.093∗ -0.124∗∗ -0.111∗∗∗ -0.246∗∗ -0.605∗∗∗ -0.033 -0.036 -0.112∗

(km2) (0.053) (0.050) (0.054) (0.010) (0.082) (0.138) (0.276) (0.060) (0.057)

Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes

Infrastructure Unit km2 km2 km2 km2 km2 IHS km2 km2 km2

Sample Restriction 2015 users Away Active non-COVID Truncate None None None None
User x Year FEs X X X X X X X X X
District FEs X X X X X X X X X
State x Month FEs X X X X X X X X X
Weights None None None None None None None None Trips
Observations 82339 123280 150011 123416 161896 161896 161896 157766 161896
R2 0.684 0.685 0.687 0.690 0.690 0.690 0.645 0.445 0.762

Note: ∗ p < .1, ∗∗ p < .05, ∗∗∗ p <.01. The outcome in all columns (except 7 and 8) is mean species richness
(SR) across users’ trips in a district-month. Column 1 is estimated on users who signed up for eBird in
2015. Column 2 drops observations in users’ home districts. Column 3 restricts the sample to districts
with above-median numbers of users who record an above-median number of trips per user. Column 4
drops the year 2020. Column 5 drops the three largest projects. Column 6 uses the inverse hyperbolic sine
of the explanatory variable. Columns 7 and 8 show results with two alternative species diversity metrics.
Column 9 weights the regression with number of trips underlying the outcome. All regressions control for:
temperature, rainfall, traveling trips, log nightlights, log duration, log distance, log experience, log group
size, and log spatial coverage. Standard errors clustered by biome.

Table S9: Robustness: Close Election Design

(1) (2) (3) (4) (5) (6)

Infrastructure (km2) -1.850∗∗ -2.695∗∗ -1.308 -2.303∗∗ -2.044∗∗ -2.232∗

(0.713) (1.171) (0.779) (1.005) (0.801) (1.144)

Controls Yes Yes Yes Yes Yes Yes

First Stage F-Statistic 8.842 9.043 8.981 6.414 8.442 6.579
Bandwidth 2 3 5 2 2 2
Polynomial Order 1 1 1 2 3 1
User FEs X X X X X
User x Year FEs X
District FEs X X X X X X
State ×Month FEs X X X X X X
Year FEs X X X X X
Observations 134448 134448 134448 134448 134448 129704

Note: ∗ p < .1, ∗∗ p < .05, ∗∗∗ p <.01. Data are at the user-district-month level as in the main specifica-
tions. The outcome is mean species richness across user’s trips in a district-month. Coefficients are 2SLS
estimates as specified in Equation 8. Infrastructure is instrumented with the fraction of constituencies in
a district where the incumbent won in a close race during the most recent state election. All regressions
control for the same user- and district-level covariates as Equation 2 as well as the fraction of close-election
district constituencies where the incumbent ran, election year, and the interaction of victory margin with
an indicator for whether any incumbent ran in the district. Column 1 defines close election as a win margin
of 2 percent. Columns 2-3 expand the win margin to 3 and 5 percent, respectively. Columns 4 and 5 uses a
second- and third -rder polynomial in the win margin. Column 6 uses user-by-year fixed effects.

8



Table S10: Robustness: Treatment Heterogeneity by Institutional Type
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Infrastructure -0.519∗∗ -0.510∗∗∗ -0.548∗∗∗ -0.558∗∗∗ -0.236 -0.607∗∗∗ -0.551∗∗∗ -1.227∗∗∗ -0.551∗∗

(0.116) (0.098) (0.037) (0.083) (0.265) (0.079) (0.067) (0.202) (0.189)

Infrastructure 0.037 0.327∗∗∗ 0.435∗∗ 0.421∗∗ 0.377∗∗ 0.454∗ 0.434∗∗ 1.529∗∗∗ 0.434∗∗

× Inclusive (=1) (0.136) (0.032) (0.132) (0.114) (0.125) (0.191) (0.116) (0.329) (0.149)

Infra. × Tribal Share Yes Yes Yes Yes Yes Yes Yes Yes Yes

Infra. × Baseline Forest Yes Yes Yes Yes Yes Yes Yes Yes Yes

Unit km2 km2 km2 km2 km2 km2 km2 IHS km2

Sample Restriction None None None None 2015 users preCOVID Truncate None None
User ×Month FEs X
User × Year FEs X X X X X X X X
District FEs X X X X X X X X
District ×Month FEs X
State x Month FEs X X X X X X X
State × Year Fes X
Experience FEs X
Time-of-day FEs X
Clustering Biome Biome Biome Biome Biome Biome Biome Biome State
Observations 47609 58587 58204 58678 29208 43788 58760 58760 58760
R2 0.713 0.719 0.713 0.705 0.691 0.698 0.704 0.704 0.704

Note: ∗ p < .1, ∗∗ p < .05, ∗∗∗ p <.01. The outcome in all specifications is mean species richness across users’ trips in a district-month.
Inclusive (=1) means the district has historically inclusive institutions. Sample restricted to 163 districts in Banerjee and Iyer (2005)
and aggregated to 1991 boundaries. ST share is the fraction of district population belonging to a tribal group as measured in 2011.
Experience fixed effects indicate cumulative number of trips taken by a user. Time-of-day fixed effects indicate whether users’ typical
trips in a district-month were recorded during morning, afternoon, evening, or night. Column 5 is estimated on users who signed up
for eBird in 2015. Column 6 drops the year 2020. Column 7 drops the three largest projects. Column 8 uses the inverse hyperbolic
sine of the explanatory variable. All regressions control for: temperature, rainfall, traveling trips, log nightlights, log duration, log
distance, log experience, log group size, and log spatial coverage. Fixed effects and clustering described in the footer.

Table S11: Mechanisms: Institutions and Sustainable Infrastructure
(1) (2) (3)

Informed Consent Cost-Benefit Protected Area

Inclusive (=1) 0.078∗∗∗ 0.071∗∗ -0.006∗∗

(0.015) (0.029) (0.002)

Controls Yes Yes Yes

Outcome Mean 0.234 0.156 0.007
State × Time FEs X X X
N 2275 2275 2270
R2 0.541 0.510 0.237

Note: ∗ p < .1, ∗∗ p < .05, ∗∗∗ p <.01. Data are at the project level for the digital subsample. Inclusive
(=1) means the district has historically inclusive institutions. Sample restricted to 163 districts in Banerjee
and Iyer (2005) under British Rule. Informed consent indicates whether the Gram Sabha was consulted and
the FRA followed. Cost-Benefit Analyses are reports commissioned during project review. Protected Area
equals one if the project is sited in or near one. All specifications include controls for: project size, district
population share belonging to a tribal group as measured in 2011, baseline forest cover, and district area.
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Table S12: Balance Table: Project Category Distribution by Institutional Type

(1) (2) (3) (4)
No Controls or FEs Controls State FEs State + Year FEs

Electricity -0.016 0.039 0.066∗∗ 0.071∗∗

(0.023) (0.038) (0.029) (0.029)
Irrigation -0.049 -0.019 -0.012 -0.005

0.034 0.032 0.020 0.020
Mining -0.020 0.010 -0.018∗ -0.017∗

0.015 0.011 0.010 0.010
Other 0.000 -0.081 -0.027 -0.028

0.048 0.049 0.053 0.050
Resettlement -0.020 -0.016 -0.001 -0.001

0.012 0.010 0.008 0.008
Transportation 0.104∗ 0.067 -0.008 -0.019

0.056 0.038 0.049 0.046

Note: ∗ p < .1, ∗∗ p < .05, ∗∗∗ p <.01. Values describe the difference in project shares of each category
between districts with inclusive and extractive institutions. For example, the first cell implies that inclusive
districts have 1.6p.p less electricity projects than extractive districts. Values in each cell are from separate
project-level regressions of an indicator for that category on an indicator for whether its district of approval
is inclusive. Column 1 includes no other controls or fixed effects and describes the difference in mean
project shares. Column 2 adds controls for: project size, district population share belonging to a tribal
group as measured in 2011, baseline forest cover, and district area. Column 3 successively adds state fixed
effects, and column 4 adds state and year fixed effects.
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S2 Appendix Figures

Figure S1: Example Approval Letter
Note: Scanned letter from Principal Secretary of State Forest Ministry approving proposal for deforestation
of 185 ha. for irrigation project. Encroachment area, district, and state are extracted for construction of
manual sample. Additional fields from the actual proposal provided for the digital sample.
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Figure S2: Within-User Distribution of Spatiotemporal Activity
Note: Distributions are based on aggregating eBird data to the user level (N=17,634 users). Panel A is the
distribution of total number of states traversed for eBirding per user during a year. Panel B shows the same
for total number of districts traversed per user-year. In Panel C, x-axis denotes number of months in the
year in which users recorded trips.
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Figure S3: Biomes of India
Note: Data obtained from the Nature Conservancy Terrestrial Ecoregion shapefiles.
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Figure S4: Margin of Victory, Infrastructure Project Approvals, and Species Richness
Note: Panel A (top) shows the first stage (Equation 7) and Panel B (bottom) shows the reduced form. Each
figure plots a binscatter of mean incumbent win margins across close elections (x-axis) in the district against
the outcome (y-axis) residualized on user, district, state-month and year fixed effects as well as the same set
of covariates as the main TWFE specification. Points to the left of zero denote districts where incumbents
lost in close elections. A linear fit is generated separately for each side of zero, with 95% confidence intervals
displayed.
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Figure S5: Density Discontinuity Test for Manipulation
Note: The figure plots a density test from Cattaneo et al. (2020). The black line traces the density of ob-
servations in each margin-of-victory bin. Dashed lines are 95% confidence intervals around the local linear
density estimates. Grey bars are a histogram of victory margin.

Figure S6: Cumulative Distribution of Weighting Variable
Note: The x-axis measures the total number of birdwatching trips taken by a user in a district-time period.
Data are truncated at the 95th percentile to remove outliers. The y-axis is the percentage of observations
with values less than the x-axis value.
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Figure S7: Example Letter of Informed Consent
Note: Figure shows scanned letter from Principal Secretary of State Forest Ministry (Rajasthan) approving
proposal for deforestation of 185 hectares for irrigation project. Encroachment area, district, and state are
extracted for construction of manual sample. Additional fields from the actual proposal/application itself
is only provided for the digital sample.
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S3 Infrastructure Data

This Appendix provides supplementary details about the infrastructure data sample. It
also presents additional summary statistics about projects by ownership type and shape.

S3.1 Forest Clearance Process

To receive stage-I approval, the firm first submits a proposal to the District Forest Office
(DFO). The DFO commissions a site inspection report, which is forwarded to the State
Forest Department. At this point, approval is granted to small projects (0-5 ha., except
mining). Medium projects (5-40 ha.) are forwarded to the Regional Office (RO) and large
projects (> 40 ha.) to the Ministry of Environment Forests and Climate Change (MoE-
FCC). The FAC then rules on stage-I.

To receive stage-II approval, the firm pays into a tree-planting fund and is checked for
compliance with the Forest Rights Act. The infrastructure data sample consists of projects
with stage-II approval.

S3.2 Infrastructure Sample Construction

Table S13: Procedure for Project Categorization
Raw Entry Recategorized Entry
hydel, sub station, thermal, transmission
line, village electricity, wind power, solar
power

Electricity

road, railway Transportation

canal, irrigation, drinking water Irrigation

forest village conversion, rehabilitation Resettlement

mining, quarrying, borehole prospecting Mining

Everything else Other
Note: The left column is the verbatim project categories as entered in application by the firm. The right
column describes the synthesized categories for the purpose of simplifying project types.

Sample Construction and Digitization The project sample consists of projects approved
between 2015-2020. Applications submitted after 2014 (N=6,597) were scraped from the
online portal (the digital subsample). Applications submitted before 2014 but approved
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afterwards (N=1,732) were manually digitized (the manual subsample). The application
itself was not available for the manual subsample, but a PDF of the approval letter listing
project size, location etc. was available in the portal.

The manual subsample was digitized as follows. First, a PDF of each approval let-
ter was downloaded. The district of each project was extracted from the subject header
(see Figure S1) and cross-checked online. If only the village was given, the district was
identified on Google. Second, project size (hectares approved for forest diversion) was
also extracted from the letter. For projects that span multiple districts (e.g. roads), a sepa-
rate document called “Form A” (also available in the portal) was downloaded to identify
hectares per district. 26 multi-district projects did not specify a district-wise breakdown,
in which case total project size was divided equally across districts. Lastly, project cate-
gory was extracted from the letter. In some cases it was taken from the Form A document
which includes a detailed project description1 .

Project Categorization Verbatim project categories often refer to the same type of project.
To simplify the analysis, I re-categorize projects according to Table S132. Because of in-
consistencies in raw data entry by firms, I manually examine and reassign projects mis-
takenly categorized as “other”. “Other” project descriptions with the word “power”,
“substation”, and “kv” are placed in the Electricity category. “Other” projects with the
word “resettle”, “relocate”, and “pattayam”3 are placed in the Resettlement category.

District Splitting I address the problem of district splitting and name changes. In the
application, district name is an unstructured string with many spelling inconsistencies.
To form a consistent matching key, I link the official district names and codes from the
2011 Census. To do this, I first manually rename district names to their original 2011
census name if there was a name change after 2011. Second, in the case of a district split
after 2011, I rename the “child” districts to the name of the 2011 “parent” district. These
two steps produce a single geographical unit that can be tracked consistently across years.
Third, I perform a fuzzy match between district names in the application and the 2011 key
using the Levensthein distance between the district strings. This algorithm identifies the
official census code for 98% of districts in the application sample. The remaining 2% (8
districts) represent districts with more complex redrawing procedures and are dropped.

1The category of each project in the manual subsample was available digitally, and scraped, but the
majority were listed as “Other”. I manually categorized them based on the subject header (see Figure S1)

2There are 89 projects categorized as “industry” which together make < 0.1% of total area cleared during
the study period. For this reason, I include industrial projects in the “other” category.

3Pattayam means deed and refers to a scheme providing land to the landless, typically tribal families.
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Panel Aggregation I transform project-level data into a district-monthly panel in three
steps. First, since each project can span multiple districts (e.g. roads), I reshape the data
from project to project-district level. Each row contains the project component area falling
into a specific district. The sum of rows for a single project equals total project size. Sec-
ond, I aggregate to the total forest area diverted in each district and year-month, over-
all and category-wise (e.g. total deforestation in January 2018 for electricity projects in
Delhi). Third, I balance the panel by assuming districts and time periods not in the portal
had zero stage-II approvals.
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S3.3 Summary Statistics by Project Ownership and Shape

Table S14: Summary Statistics of Projects by Ownership and Shape

Num. Projects Mean Size (ha.) SD (ha.) Total Area (ha.)

Panel A: Ownership
Public 4,666 9.6 89.9 44,861.3
Private 1,549 1.9 15.2 2,910.6
Neither 382 2.7 24.9 1,019.8

Panel B: Shape
Linear 5,768 4.8 28.2 27,472.6
Nonlinear 829 25.7 201.0 21,319.1

Note: ∗ p < .1, ∗∗ p < .05, ∗∗∗ p <.01. Data are arranged at the project level for 6,597 approved projects that
reported ownership. Panel A splits projects by ownership type. Panel B splits projects by shape. Total area
(ha.) is the summed deforestation area of all projects in the sample for the particular project group.

Table S15: Percent of Projects in Each Category by Ownership and Shape

Ownership (%) Shape (%)

Public Private Neither Linear Nonlinear
(1) (2) (3) (4) (5)

Electricity 81.48 15.86 2.67 86.03 13.97
Irrigation 95.34 2.48 2.17 72.05 27.95
Mining 49.15 35.59 15.25 0.00 100.00
Other 58.07 33.53 8.40 85.04 14.96
Resettlement 100.00 0.00 0.00 5.00 95.00
Transportation 88.41 9.54 2.05 99.03 0.97

Note: Data are arranged at the project level for 6,597 approved projects that reported ownership and shape,
prior to aggregating to the district level. Cell values denote row percentages within each group (i.e. %
of projects in each category falling under different ownership types). Thus, the row sum of columns 1-3
equals 100, and same for columns 4-5.

Table S14 shows summary statistics by ownership and shape. Over 70% of projects
are publicly owned (Panel A). These are about five times larger than non-public projects.
Grouped by shape, only 10% of projects are nonlinear, but these are five times larger
than linear projects (Panel B). Table S15 shows the project distribution by ownership,
shape, and category. Public projects are largest because resettlement and irrigation—the
second and third largest category—are almost all publicly owned (column 1). Mining
and “other” feature a more even public-private split than any other category. Nonlinear
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projects are largest because nearly all mining and resettlement projects are non-linear
(column 5).
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S4 Additional Results

This appendix section provides additional results.

S4.1 Timing of Permitting Decisions

This Appendix provides additional evidence for the quasi-randomness of permitting de-
cisions. I conduct a test based on Deshpande and Li (2019) that predicts the likelihood
and timing of project approval based on observable characteristics. I find that neither
bureaucratic nor geographic characteristics consistently predict approval or the timing of
approval, helping make the case that the timing of permits is plausibly random.

First, I predict whether observable characteristics predict the likelihood of project ap-
proval in each year between 2016-2019 with the following equation:

Approvedi = α + β1ProcessingTimei + β2Appsi + ΓX′i + θs + εi (1)

where Approvedi is a dummy indicating whether project i was approved in a given
year. ProcessingTimei is the mean processing time (number of days between proposal
submission and approval) in the district of project i in the previous year. Appsi is the
number of projects approved in i’s district in the previous year. X′i is a vector of geo-
graphic characteristics in the district of project i including: distance to coast, slope, eleva-
tion, water area within 50km, and area of nearest coal deposit4. θs is a state fixed effect
which account for state-specific factors influencing project approval.

Next, I investigate whether the same local characteristics predict the timing of project
approvals between 2016-2019 for projects under review in that year and which will be
approved in the future. I estimate the following equation:

ApprovalYeari = α + β1ProcessingTimei + β2Appsi + ΓX′i + θs + εi (2)

where ApprovalYeari is the year in which project i was approved.
Table S16 presents the estimates. Columns 1-4 present estimates of Equation 1 of how

local characteristics affects the likelihood of project approval for projects under considera-
tion in the column year. Columns 5-8 present estimates of equation 2 of how these charac-
teristics predict the timing of project approval conditional on the project being eventually
approved. The sample consists of projects under consideration in the column year and
will be approved by 2020. Overall, there are no observable characteristics that consistently

4Coal deposits are obtained from the USGS (Trippi and Tewalt, 2011), Water body shapefiles are from
Natural Earth Data, and gridded elevation is from the NOAA.
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predict project approval in each year. There are also no characteristics that consistently
predicts the timing of approval. These ancillary results help build confidence that the
timing of permit awards is effectively random.

Table S16: Determinants of Permit Award Timing
Project Approved Timing of Approval

(1) (2) (3) (4) (5) (6) (7) (8)
2016 2017 2018 2019 2016 2017 2018 2019

Processing Time -0.0015 -0.0018∗∗ 0.0008 -0.0012 0.0125∗ 0.0032 -0.0084∗∗ 0.0038
(previous year) (0.0009) (0.0009) (0.0012) (0.0015) (0.0072) (0.0059) (0.0041) (0.0032)

Applications 0.1904 -0.0848 0.1292 0.0695 -0.7973 -0.6073 -0.9736∗∗ -0.6083∗∗∗

(previous year) (0.1257) (0.1034) (0.0899) (0.1643) (0.6632) (0.5299) (0.3765) (0.2316)

Distance to Coast -0.0115 -0.0133∗ 0.0096 0.0166∗∗ 0.0810∗ 0.0182 -0.0218 -0.0109
(km) (0.0073) (0.0070) (0.0081) (0.0075) (0.0458) (0.0347) (0.0252) (0.0145)

Slope (degrees) -1.2681 1.6114∗ -0.0725 -0.8172 -2.0044 -7.6311∗∗ -1.8914 -0.2557
(0.8519) (0.8329) (1.1301) (0.7877) (2.9915) (3.6630) (3.3840) (1.6727)

Elevation (m) 0.0061 -0.0066 -0.0002 0.0049 0.0023 0.0287 0.0037 -0.0069
(0.0044) (0.0044) (0.0070) (0.0044) (0.0165) (0.0206) (0.0194) (0.0087)

Water Area (km2) -0.0000 0.0000 0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0000
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Coal Area (km2) -0.0006 0.0021∗ -0.0011 0.0004 0.0005 -0.0043 0.0006 -0.0004
(0.0012) (0.0012) (0.0009) (0.0014) (0.0047) (0.0036) (0.0026) (0.0029)

State FEs X X X X X X X X
Observations 4929 5684 5951 6222 4156 4054 3392 2537
R2 0.029 0.025 0.019 0.036 0.091 0.078 0.082 0.101

Note: ∗ p < .1, ∗∗ p < .05, ∗∗∗ p <.01. Data are a balanced project year panel of projects under review in the
year indicated in the column heading and will be approved by 2020. Columns 1-4 presents estimates from
Equation 1 of how observable characteristics predict the likelihood of project approval for projects under
consideration in the year indicated in the column heading. Columns 5-8 present estimates from Equa-
tion 2 of how observable characteristics predict the timing of project approval, conditional on approval.
ProcessingTime is the mean number of days between proposal submission and approval in the district of
project i. Applications is the number of proposals approved in the district of project i. Geography variables
are at the district-level. Standard errors clustered at the district level.
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S4.2 Ruling Out Reverse Causality

To rule out reverse causality and improve causal interpretation of the main estimates, I
test whether lagged bird diversity predicts project approval. To do this, I first partial out
the effort covariates from individual-level species richness data and aggregate residuals
to the district level. This represents “natural” variation in local species diversity, separate
from variation based on user characteristics, and aligns with what district authorities
might consider in project approval decisions. Second, I estimate the following 12-month
lagged equation:

In f rastructuredst = γd + θsy + δm + SRdst +
12

∑
k=1

βk · SRds(t−k) + εdst (3)

where In f rastructuredst is cumulative infrastructure area approved in district d of state
s in year-month t. SRdst is species richness in district d, residualized on individual bird-
watching effort. γd are district fixed effects, which account for time-invariant local deter-
minants of project placement. θsy are state-year fixed effects, which account for regional
demand shocks. δm are month fixed effects, which account for seasonality. β′ks capture
the impact of species diversity k months ago on present-day infrastructure approvals.

Table S17 presents the estimates. Project placement does not appear to be influenced
by local bird diversity. Lagged coefficients are near-zero and statistically insignificant
across three- (column 1), six- (column 2), and 12-month (column 3) windows. These find-
ings improve confidence that reverse causality is not driving my main results, further
supporting the assumption of quasi-random project approvals.
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Table S17: Impact of Lagged Species Diversity on Infrastructure Placement

outcome: infrastructure (km2) (1) (2) (3)

Species Richness (Lag 0) -0.002 -0.007 0.023
(0.027) (0.033) (0.033)

Species Richness (Lag 1) 0.005 0.005 0.031
(0.027) (0.032) (0.035)

Species Richness (Lag 2) -0.007 -0.005 -0.006
(0.008) (0.009) (0.008)

Species Richness (Lag 3) -0.008 -0.011 -0.018
(0.009) (0.010) (0.013)

Species Richness (Lag 4) -0.010 -0.008
(0.009) (0.014)

Species Richness (Lag 5) -0.006 -0.020
(0.007) (0.013)

Species Richness (Lag 6) -0.007 -0.021
(0.009) (0.012)

Species Richness (Lag 7) -0.012
(0.012)

Species Richness (Lag 8) -0.014
(0.012)

Species Richness (Lag 9) -0.006
(0.009)

Species Richness (Lag 10) -0.013
(0.010)

Species Richness (Lag 11) -0.010
(0.009)

Species Richness (Lag 12) -0.005
(0.012)

District FEs X X X
State × Year FEs X X X
Month FEs X X X
Observations 19924 18247 15250
R2 0.903 0.916 0.935

Note: ∗ p < .1, ∗∗ p < .05, ∗∗∗ p <.01. Data are at the district-yearmonth level. The outcome in all specifica-
tions is cumulative area of infrastructure encroachment. Explanatory variables are monthly lags of species
richness. Species richness is the mean over eBird users’ birdwatching trips in a district, residualized on
effort covariates. Standard errors clustered by biome.
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S4.3 Impacts by Project Ownership and Shape

Table S18 groups estimates by project ownership and shape. Public projects are the main
threat to biodiversity (Panel A), mainly because resettlement, transport, and irrigation
projects—the three most harmful categories—are almost all publicly owned (Table S15).
In contrast, the effect of private projects is noisy, likely because “other” projects are largely
privately owned (Figure 4B of main text). Similar logic helps interpret the estimates by
project shape (Panel B). Nonlinear projects have a robust negative impact on species di-
versity. The magnitude is a combination of the small mining and large resettlement co-
efficients in Figure 4B of the main text, which are almost all nonlinear (Table S15). The
tradeoff for linear projects is weaker but the magnitude is twice as large. The large magni-
tude is a combination of the transportation, electricity, and irrigation coefficients, which
are mostly linear (Table S15). Wide standard errors likely come from “other” projects,
which are also mostly linear.
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Table S18: Impact of Infrastructure on Species Diversity by Project Ownership and Shape

(1) (2) (3)

Panel A: Ownership

Public -0.197∗∗∗ -0.203∗∗∗ -0.204∗∗∗

(0.047) (0.048) (0.048)

Private -0.806 -0.299 -0.297
(0.925) (0.737) (0.735)

Neither 2.911 0.852 0.851
(1.854) (0.667) (0.669)

Panel B: Shape

Linear -0.260 -0.345∗ -0.344∗

(0.193) (0.168) (0.168)

Nonlinear -0.177∗∗∗ -0.170∗∗∗ -0.171∗∗∗

(0.043) (0.036) (0.035)

Weather Controls Yes Yes Yes

Behaviour Controls No Yes Yes

General Economic Trends No No Yes

Outcome Mean 23.748 23.748 23.748
User x Year FEs X X X
District FEs X X X
State ×Month FEs X X X
Observations 161896 161896 161896
R2 0.559 0.690 0.690

Note: The outcome in all specifications is mean species richness across users’ trips in a district-month. In
Panel A, rows denote cumulative area of infrastructure encroachments by projects of a particular owner-
ship type in a district-month. Panel B reports the same by project shape. Column 1-3 successively add
controls. Weather controls include temperature and rainfall. Behaviour controls include: traveling trips,
log duration, log distance, log group size, and log spatial coverage. General economic trends is measured
by nightlights. Standard errors clustered by biome.
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S4.4 Impacts by Species Type

To estimate impacts by species type, I manually code each species in the eBird dataset
(N=1,640 species) with their migratory status, habitat specialization, endemicity, and
range size. These characteristics are obtained via the State of India’s Birds database, which
contains a searchable repository of Indian birds along with their detailed physiology. Mi-
gration categories include: non-migrant, long migrant (winter or summer migrant), and
short migrant (within India migrant). Habitat specialization categories include: forest,
grassland, wetland, and generalist (observed in all habitats). Endemicity is either en-
demic or non-endemic.

In the same way that species abundance by IUCN status is calculated (Section 3.2 of
main text), I count the number of times that each user recorded species in each category
during a district and year-month. I then estimate Equation 2 in the main text with these
user-level abundance measures as outcomes. I report Poisson estimates since the outcome
is a count variable. Table S19 presents the estimates. Results are discussed in Section 6.3
of the main text.

Table S19: Estimates by Habitat Type and Endemicity
Habitat Specialization Endemicity Migration Type

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Forest Wetland Grass General Endem. Non-endem. Non-Mig. Short Long

Infrastructure (km2) -0.015∗∗∗ -0.007 -0.005∗∗ -0.010∗∗∗ -0.013∗∗∗ -0.012∗∗∗ -0.012∗∗∗ -0.009∗∗∗ -0.006∗∗∗

(0.003) (0.006) (0.002) (0.003) (0.003) (0.003) (0.003) (0.002) (0.001)

Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes

User x Year FEs X X X X X X X X X
District FEs X X X X X X X X X
State ×Month FEs X X X X X X X X X
Observations 158662 159502 158883 161723 160323 161871 161769 160972 159507

Note: ∗ p < .1, ∗∗ p < .05, ∗∗∗ p <.01. The outcome is a frequency count for the number of times a
user observed a species of each type during a district-year-month. Forest infrastructure is cumulative area
of infrastructure encroachments in a district-month. Coefficients are estimated from Poisson regressions
implemented with a pseudo-maximum likelihood estimator. All specifications include user-year, district,
and state-month fixed effects as well as controls for temperature, rainfall, traveling trips, log nightlights,
log duration, log distance, log group size, and log spatial coverage. Standard errors clustered by biome.
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S4.5 Impacts by Habitat Conservation Importance

To measure how important a districts’ habitat is for bird conservation, I use the Important
Bird Area (IBA) designation created by BirdLife International. IBAs are spatial units of
conservation priority and delineated based on a standardized, globally agreed upon set
of criteria determining species vulnerability. Regional IBAs are also created on a country-
by-country basis taking into account local threats and thresholds. Importantly, IBAs are
delineated such that they represent a policy-relevant and manageable unit, such as a pro-
tected area (Donald et al., 2019).

I obtained global IBA shapefiles by contacting BirdLife International directly. I then
compute two key measures of bird conservation importance at the district level to study
treatment heterogeneity. First, I measure the number of pre-period IBAs in a district.
Second, I compute the proportion of district area covered by IBAs created during the
pre-period. For both of these variables, I use an above-median indicator as a measure of
whether district habitat is of high conservation importance for bird populations or not.

Lastly, I estimate Equation 4 in the main text. Results are in Table S20 and discussed
in Section 6.4 of the main text.

Table S20: Treatment Effects by Conservation Importance
(1) (2)

Infrastructure (km2) -0.232∗∗∗ -0.125∗∗∗

(0.056) (0.034)

Infrastructure (km2) × 1[Num. IBAs > Median] 0.178∗∗

(0.069)

Infrastructure (km2) × 1[IBA Coverage > Median] 0.068
(0.094)

Infrastructure × Category Shares Yes Yes

Controls Yes Yes

User x Year FEs X X
District FEs X X
State ×Month FEs X X
Observations 161896 161896
R2 0.690 0.690

Note: ∗ p < .1, ∗∗ p < .05, ∗∗∗ p <.01. The outcome is mean species richness across users’ trips in a district-
month. In f rastructure is cumulative area of infrastructure in a district-month. Num. IBAs is the number
of pre-period IBAs in a district. IBA Coverage is the proportion of district area designated as an IBA. All
specifications include user-year, district, and state-month fixed effects as well as controls for temperature,
rainfall, traveling trips, log nightlights, log duration, log distance, log group size, and log spatial coverage.
Columns 2 and 4 additionally include six interactions terms of infrastructure with the baseline district share
of projects in each category. Standard errors clustered by biome.
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S4.6 Robustness: Alternative Fixed Effects

Table S21 tests robustness to alternative fixed effects. Columns 1-4 specify alternative
forms of seasonality. Column 1 includes user-by-month fixed effects, which relies on
comparisons across districts and years within a user-month. This accounts for seasonality
exhibiting an individual component i.e., winter migratory species mainly reported by
experts (Johnston et al., 2018). Columns 2 and 3 include district-month fixed effects, which
accounts for sub-state seasonality5. Column 4 uses biome-by-month fixed effects in case
seasonality is biome- rather than state-specific. All four estimates are strikingly similar to
the baseline estimate, suggesting that biases from individual and regional seasonality are
negligible.

Column 5 tests another way of accounting for skill. User-year fixed effects do not
account for within-year learning, nor learning among users active for less than one year.
Column 5 therefore adds fixed effects for cumulative number of trips per user. Column 6
adds time-of-day fixed effects to account for different species availability and user activity
throughout the day6. Estimates are virtually unchanged from the baseline finding.

Column 7 tests robustness to sorting. Recall that user fixed effects account for user
heterogeneity, but requires a no-sorting assumption for identification (Section 6.1 of main
text). The reverse is to compare species diversity in a fixed location, which obviates this
assumption, but then pools checklists by a changing group of users active in a grid cell.
I implement this by disaggregating eBird data down to the user-cell-month level and
including 10km2 cell fixed effect (and no user fixed effect) for identification. To account for
user heterogeneity, I add fixed effects for user experience, including cumulative number
of trips and months per year of activity. The coefficient remains stable but is less precise.
The fact that coefficients are similar, yet the preferred specification includes user fixed
effects and shows minimal sorting (Section 6.1 main text), supports the chosen design.

5Column 2 of Table S21 uses user-year and district-month fixed effects. This is likely too saturated to
yield precise estimates. Column 3 includes user and district-month fixed effects as a compromise.

6Time-of-day categorizes mean hour-of-day for user trips in a district-month. Categories are: morning:
6am-12pm; afternoon: 12pm-6pm; evening: 6pm-12am; night: 12am-6am.
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Table S21: Robustness—Alternative Fixed Effects
(1) (2) (3) (4) (5) (6) (7)

Infrastructure (km2) -0.125∗∗ -0.114 -0.080∗∗ -0.108∗ -0.117∗ -0.119∗∗ -0.105
(0.041) (0.064) (0.032) (0.051) (0.054) (0.054) (0.121)

Controls Yes Yes Yes Yes Yes Yes Yes

User x Year FEs X X X X
User ×Month FEs X
District FEs X X X X
District ×Month FEs X X
State × Year FEs X X
State ×Month FEs X X X
Biome ×Month X
Experience FEs X X
Cell FEs X
Year FEs X
Time-of-Day FEs X
Observations 143394 161087 166446 161909 161563 161665 282544
R2 0.702 0.706 0.654 0.688 0.694 0.690 0.581

Note: ∗ p < .1, ∗∗ p < .05, ∗∗∗ p <.01. The outcome in all columns is mean species richness across users’ trips
in a district-month. The estimating equation is the same as Equation 2 with different fixed effects described
in the footer. Experience fixed effects indicate cumulative number of trips taken by a user. Time-of-day
fixed effects indicate whether users’ trips in a district-month were recorded on average during morning,
afternoon, evening, or night. In column 7, data are at the user-grid-cell level and include user experience
fixed effects (cumulative number of trips and number of months per year of activity), in addition to the
controls described below. Variation in observations across columns 1-6 is from dropping singletons. All
regressions control for: temperature, rainfall, traveling trips, log nightlights, log duration, log distance, log
experience, log group size, and log spatial coverage. Standard errors clustered by biome.
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S4.7 Robustness: Alternative Standard Errors

Table S22 shows the baseline estimates adjusted for alternative clustering. Column 1 repli-
cates the baseline, whereby unobservable biophysical determinants of species diversity
are assumed to be correlated within biomes, even though treatment varies by district.
Columns 2 and 3 show that estimates are quite similar when clustering by district or
state, respectively. Clustering by state is a compromise between large biome clusters (Fig-
ure S3) and smaller districts. Columns 4-7 investigate spatial correlation more system-
atically by implementing Conley (1999) standard errors for several choices of the kernel
cutoff distance. Reassuringly, precision remains similar, even when allowing for long
distance spatial correlation up to 1000km.

Table S22: Robustness—Alternative Standard Errors

Standard Error Boundary Conley Spatial Error Cutoff

Biome District State 100km 200km 500km 1000km

(1) (2) (3) (4) (5) (6) (7)

Infrastructure (km2) -0.122∗∗ -0.122∗∗ -0.122∗ -0.122∗ -0.122∗ -0.122∗ -0.122∗∗

(0.051) (0.060) (0.062) (0.064) (0.069) (0.066) (0.054)

User × Year X X X X X X X
District X X X X X X X
State ×Month X X X X X X X
Observations 161,907 161,907 161,907 161,907 161,907 161,907 161,907
R2 0.694 0.694 0.694 0.694 0.694 0.694 0.694

Note: ∗ p < .1, ∗∗ p < .05, ∗∗∗ p <.01. Coefficient estimates and standard errors from baseline specification
with alternative error clustering. Column 1 replicates the main estimate with clustering at the biome level.
In columns 2-3, standard errors are clustered by district and state, respectively. Columns 4-7 implement
Conley (1999) standard errors for four different values of the kernel cut off distance (in km). The R software
was used to compute Conley errors; observations differ slightly from the main results due to differences in
the way R drops singletons.
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S4.8 Robustness: Category-Wise Robustness Tests

Table S23: Category-Wise Robustness—Alternative Fixed Effects
(1) (2) (3) (4) (5) (6)

Electricity -0.051 0.147∗ 0.036 0.095 0.090 0.037
(0.090) (0.071) (0.098) (0.066) (0.065) (0.051)

Irrigation -0.026 -0.158∗∗ -0.014 -0.127∗∗ -0.126∗∗ -0.062
(0.046) (0.064) (0.046) (0.050) (0.051) (0.109)

Mining -0.205∗∗ -0.051 -0.257∗∗∗ -0.055∗∗ -0.056∗∗ -0.154
(0.067) (0.047) (0.046) (0.022) (0.018) (0.259)

Other -0.236 -0.255 -0.152 -0.246 -0.256 -0.276
(0.165) (0.251) (0.234) (0.225) (0.219) (0.258)

Resettlement -0.778∗∗∗ -0.530∗∗∗ -0.447∗∗∗ -0.761∗∗∗ -0.756∗∗∗ -0.159∗∗∗

(0.166) (0.065) (0.060) (0.084) (0.077) (0.036)

Transportation -0.462 -0.431∗∗∗ -0.513 -0.414∗∗ -0.398∗ 0.159
(0.284) (0.136) (0.299) (0.167) (0.186) (0.233)

Controls Yes Yes Yes Yes Yes Yes

User x Year FEs X X X
User ×Month FEs X
Experience FEs X
District FEs X X X
District ×Month FEs X X
Cell FEs X
State ×Month FEs X X X
State × Year FEs X X
Year FEs X
Time-of-Day FEs X
Observations 143384 161029 166409 161557 161665 282427
R2 0.702 0.706 0.654 0.694 0.690 0.542

Note: ∗ p < .1, ∗∗ p < .05, ∗∗∗ p <.01. The outcome in all columns is mean species richness across users’ trips
in a district-month. Coefficients describe the marginal impact of infrastructure encroachment by projects of
a given category. The estimating equation is the same as Equation 3 with different fixed effects described in
the footer. Experience fixed effects indicate cumulative number of trips taken by a user. Time-of-day fixed
effects indicate whether users’ typical trips in a district-month were recorded during morning, afternoon,
evening, or night. In column 6, data are at the user-grid-cell level. Variation in observations across columns
1-5 is from dropping singletons. All regressions control for: temperature, rainfall, traveling trips, log night-
lights, log duration, log distance, log experience, log group size, and log spatial coverage. Standard errors
clustered by biome.
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Table S24: Category-Wise Robustness—Other
(1) (2) (3) (4) (5) (6) (7) (8) (9)
SR SR SR SR SR SR Shannon Simpson SR

Electricity -0.038 0.078 0.091 0.197 -0.224 0.132 -0.132 -0.099 0.026
(0.145) (0.076) (0.066) (0.438) (0.854) (0.926) (0.287) (0.076) (0.029)

Irrigation 0.042 -0.049 -0.121∗∗ -0.056∗ -0.164 -0.580∗∗ -0.034 -0.045 -0.175∗∗∗

(0.051) (0.062) (0.042) (0.027) (0.142) (0.214) (0.214) (0.048) (0.049)

Mining -0.055 -0.023 -0.111∗∗∗ -0.102∗∗∗ -0.031 -0.332 -0.333∗ 0.028 0.077
(0.046) (0.091) (0.021) (0.027) (0.031) (0.403) (0.178) (0.088) (0.132)

Other -0.330 -0.230 -0.264 -0.209 -0.257 -0.646 0.024 -0.072 -0.323∗∗∗

(0.204) (0.228) (0.210) (0.224) (0.209) (0.462) (0.853) (0.176) (0.068)

Resettlement -0.875∗∗∗ -0.951∗∗∗ -0.728∗∗∗ -0.565∗∗∗ -0.750∗∗∗ -1.682∗∗∗ 2.362∗∗∗ 0.348∗∗ -0.563∗∗∗

(0.097) (0.125) (0.088) (0.095) (0.084) (0.307) (0.162) (0.124) (0.066)

Transportation -0.551∗∗∗ -0.502∗∗ -0.444∗∗ -0.241 -0.381∗∗ -0.882∗∗∗ -0.783 0.073 -0.137
(0.125) (0.168) (0.188) (0.140) (0.166) (0.203) (1.449) (0.270) (0.159)

Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes

Infrastructure Unit km2 km2 km2 km2 km2 IHS km2 km2 km2

Sample Restriction 2015 users Away Active non-COVID Truncate None None None None
User x Year FEs X X X X X X X X X
District FEs X X X X X X X X X
State x Month FEs X X X X X X X X X
Weights None None None None None None None None Trips
Observations 82339 123280 150011 123416 161896 161896 161896 157766 161896
R2 0.684 0.685 0.687 0.690 0.690 0.690 0.645 0.445 0.762

Note: ∗ p < .1, ∗∗ p < .05, ∗∗∗ p <.01. The outcome in all columns (except 7 and 8) is mean species richness (SR) across users’ trips
in a district-month. Coefficients show the marginal impact of infrastructure encroachment by projects of a given category. Column
1 is estimated on users who signed up for eBird in 2015. Column 2 drops observations in users’ home districts. Column 3 restricts
the sample to districts with above-median numbers of users who record an above-median number of trips per user. Column 4 drops
the year 2020. Column 5 drops the three largest projects. Column 6 uses the inverse hyperbolic sine of the explanatory variable.
Columns 7 and 8 show results with two alternative species diversity metrics. Column 9 weights the regression with number of trips
underlying the outcome. All regressions control for: temperature, rainfall, traveling trips, log nightlights, log duration, log distance,
log experience, log group size, and log spatial coverage. Standard errors clustered by biome.
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S4.9 Banerjee and Iyer (2005) Extension

To replicate and extend Banerjee and Iyer (2005), I match district-level data on conflict
events and criminal politicians with the raiyatwari/zamindari (inclusive/extractive) dis-
trict classification provided in the Banerjee and Iyer (2005) replication files. Conflict
data are from ACLED (Raleigh et al., 2010), a global georeferenced repository of con-
flict events. Each event contains a date, GIS coordinates, and a detailed description. To
identify environment-related conflicts, I keyword search events with the word ”environ-
ment” or ”forests”. To identify conflicts involving minorities, I search for events with the
word ”tribe”, ”caste”, or ”scheduled”. Lastly, I build a district-year panel by counting the
total number of environmental and minority-involved conflicts in a district and year.

Data on politician characteristics are from sworn affidavits submitted by candidates
to the Electoral Commission of India (ECI), including a list of criminal charges at the
time of candidacy. These data are digitized by the ECI and publicly distributed through
the SHRUG database (Asher et al., 2021). To build a district-year panel, I aggregate the
fraction of candidates across constituencies in each district with criminal charges.

To estimate the effect of institutions on conflict and criminality, I replicate the main
specification in Banerjee and Iyer (2005). One difference is that my data are a panel
whereas theirs is a cross section. I therefore include state-year fixed effects so that cross-
sectional comparisons across districts are used for identification. Another difference is
that I use Poisson regressions when the outcomes are counts of conflict events.

I estimate the following equation:

Ydsy = α + β1 · Inclusived + ΓX′d + θsy + εdsy (4)

where Ydsy is either the number of conflict events or the share of criminal politicians in
district d of state s in year y. Inclusived is a dummy for whether district d has inclusive
(raiyatwari) institutions. X′d is a set of covariates included in Banerjee and Iyer (2005).
θsy are state-year fixed effects. β1 is the difference in conflict or criminality in inclusive
relative to extractive districts.

Results are in Table S25 and described in Section 7.1 of the main text.
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Table S25: Banerjee and Iyer (2005): Institutions, Protests, and Criminal Politicians

Protests (Number) Criminal Politicians (Pct.)

(1) (2) (3) (4)
Environmental Minorities Any Crime Num. Crimes

Inclusive (=1) -0.906 -0.392∗∗ -0.002 -0.041
(0.649) (0.190) (0.009) (0.045)

Controls Yes Yes Yes Yes

Outcome Mean 0.113 0.572 0.200 0.499
State × Time FEs
Estimator Poisson Poisson OLS OLS
N 337 685 207 207
R2 0.586 0.501

Note: ∗ p < .1, ∗∗ p < .05, ∗∗∗ p <.01. Sample is restricted to 163 districts in Banerjee and Iyer (2005).
The outcome in column 1 is the number of environmental protests. Column 2 is the number of conflicts
involving scheduled castes or tribes. Column 3 is the the share of candidates who ran in the last election
having a criminal charge. Column 3 is the mean number of criminal charges across candidates from the
previous election. All specifications control for: scheduled caste and tribe share, baseline tree cover, district
area, latitude, altitude, and a coastal dummy.
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Figure S8: Distance between real and imputed home locations
Note: Data are from 210 eBird users who volunteered their actual home locations. Distance is the straight-
line distance between their actual home and the centre of their trips (imputed home).

S5 User Demographics

eBird does not release data on user demographics. This appendix describes a method for
inferring demographics when official data is unavailable. First, I impute user home loca-
tions as the gravitational centre of their trips. Second, I compare the distribution of user
home locations to the general population to see whether they are rural or urban. Lastly, I
characterize users more precisely by studying respondents from a large household survey
who live near eBird users. The last two steps are inspired by Blanchard et al. (2023).

User Home Locations Home is defined as the gravitational centre of users’ trips. I start
with the full sample frame (all protocols) and find the centroid of users’ trips. Since trips
far from the main cluster (e.g. trips during vacation) warp the centroid, I drop outliers and
then re-compute home. Outliers are identified by computing the straight-line distance
from home to each destination, and then dropping those with distances < Q1-1.5*IQR or
above Q3+1.5*IQR, where Q1 and Q3 are the first and third quartiles, respectively.

This method produces a fairly accurate approximation of home location. 210 users
volunteered real home locations, which I use for corroboration. I compute the straight-
line distance (in km) between their real and imputed home. Figure S8 shows that the
median difference is only 17km, which suggests considerable accuracy of the imputation.

I acknowledge this check is based on a selected sample. However, a similar impu-
tation is applied for estimating eBird travel costs by Kolstoe and Cameron (2017), who
received special access to eBird member profiles (including home address) for a much
larger sample. Their results are robust to using imputed and real home locations.
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Figure S9: Population density of overall population and eBird users
Note: Both maps are at 20km resolution. Panel A) is the total population count in a cell from WorldPop.
The method used for calculating population counts is described in the manual: https://www.worldpop.
org/methods/top_down_constrained_vs_unconstrained. Panel B) shows the count of eBird user home
locations in each cell.

Where Do Users Live? To visualize how representative users are in terms of where they
live, I map imputed homes of all 17,634 users against gridded population density data for
India. User density is mapped by constructing a 20 × 20km resolution grid and counting
the number of user homes in each cell. Population density for 2015 is obtained from
WorldPop7. Data are at 1km resolution and aggregated to 20km for consistency.

Dark hotspots in panel A of Figure S9 are India’s largest cities. Many of these cities are
also home to the highest density of eBird users (Panel B). While it may be unsurprising
that eBird users live in big cities, Panel B also shows many remote eBird users (green).

To assess representativity, I compare the fraction of users living in “mega-cities” with
more than 1 million population to that of the overall population. City polygons are ob-
tained from the Global Rural-Urban Mapping Project (GRUMP), and I add a 3km buffer
to include suburbs. Overlapping boundaries are dissolved into a single region. Extract-
ing WorldPop counts over these polygons reveals that 27% of the Indian population live
in megacities. The equivalent number for eBird users is 43%.

Location Profiles from the DHS 2015-16 Survey As a last step to characterize eBird
users, I draw on the DHS, a nationally representative household survey of 600,000 house-
holds. Households are grouped into georeferenced clusters, usually a village or town.

7Data accessed from: https://www.worldpop.org/. I use the 1km resolution unconstrained mosaic.
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Table S26: T-test for equality of means between matched eBird and DHS samples

Variable All Urban Rural

HH Size -0.375*** -0.193*** -0.341***
Cellphone (=1) 0.053*** 0.013*** 0.040***
Fridge (=1) 0.253*** 0.089*** 0.181***
Car (=1) 0.089*** 0.056*** 0.067***
Sep. Kitchen (=1) 0.139*** 0.035*** 0.190***
Colour TV (=1) 0.212*** 0.045*** 0.190***
Internet (=1) 0.110*** 0.062*** 0.041***
Washing Machine (=1) 0.191*** 0.109*** 0.101***
Flush Toilet (=1) 0.271*** 0.053*** 0.216***

Note: ∗ p < .1, ∗∗ p < .05, ∗∗∗ p <.01. Difference in characteristics between DHS respondents living in
similar locations as eBird users compared to the overall DHS survey. The former dataset is weighted by the
number of users to which each cluster is matched and the latter uses DHS survey weights. Robust standard
errors are bootstrapped.

There are 28,395 clusters with available coordinates. My goal is to identify clusters com-
parable to where eBird users live. One challenge is that cluster centroids are displaced to
ensure privacy. Urban and rural clusters are displaced by up to 2 and 10km, respectively.

I start by defining eBird users as urban if they live in cities and rural if not. Cities are
defined by GRUMP polygons (see above). Next, I identify DHS clusters within 5km of
urban user homes and 10km of rural user homes to account for displacements. This may
generate mismatched pairs if, for example, a user living in a Delhi suburb is matched to a
nearby rural cluster as well as urban clusters inside Delhi. Therefore, I only keep matches
if the population density of the DHS cluster is within 25% of that in the user’s home
location, both calculated over a 5km buffer. This method matches 61% of users with at
least one comparable DHS cluster. Note that the same cluster can match to several nearby
users, resulting in duplicates. This is equivalent to a weighted dataset of unique DHS
respondents with weights equal to the number of users to which the cluster is matched
(Blanchard et al., 2023). I call this the “matched eBird” sample.

This procedure presents a new way to assess whether eBird users live in locations
that are statistically similar to the average population. As such, the citizen scientists of
India are characterized in a data-poor context. I compare users along several DHS wealth
indicators, including household size and ownership of physical assets. T-tests for equality
of means are conducted between the matched eBird sample and the overall DHS sample,
with bootstrapped standard errors robust to heteroskedasticity. Survey weights are used
for the overall sample and the number of matched users for the matched eBird sample.

Table S26 shows the results. Overall, there are statistically significant differences in
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wealth between the matched and overall sample, indicating that eBird users live in non-
representative locations. Compared to the overall population, eBird users live in places
with smaller household sizes and better access to amenities such as a fridge, car, sep-
arate kitchen, and flush toilets. These differences persist even within rural and urban
subsamples. Put differently, the urban locations where eBird users live are wealthier than
the average urban location. Yet it should also be noted that these wealth differences are
quantitatively small. Thus, while eBird users live in places that are not nationally repre-
sentative, these places are not markedly atypical either.
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S6 Close Election Design

Section 6.7 of the main text tests robustness of the infrastructure-biodiversity tradeoff to
an IV strategy based on close elections between incumbents and runner ups. The fraction
of constituencies in a district where the incumbent won in close elections is used as an
instrument for infrastructure approvals. Identification is based on comparisons of eBird
observations among users travelling between places where incumbents just barely won
to where they just barely lost. This appendix describes the design in more detail.

S6.1 Political Context

India has a federal structure with national and state assemblies. States are partitioned into
administrative districts, which are politically significant units since States appoint several
district officials, including a District Forest Officer. Districts are further split into single-
member State Assembly constituencies with leaders elected through a simple majority
voting rule. The constitution requires state elections every five years, although elections
are not synchronized across states. One limitation is that my 6-year panel is shorter than
ideal for estimating the impact of elections on infrastructure and biodiversity. However,
this drawback is partially mitigated by the staggered nature of state elections. There are
32 statewide elections across 30 states during the study period.

S6.2 Election Data

Election data are from the Trivedi Center for Political Data and distributed through the So-
cioeconomic High-Resolution Rural-Urban Geographic Dataset on India (SHRUG) (Asher
et al., 2021). Both winner-level and candidate-level data are available at the constituency
level. The main data include candidate party, election year, and vote share. First, in each
election year, I use the winner-level data to identify the winner party in the previous
election. Next, I use the candidate-level data to identify incumbent candidates based on
whether their party is the same as the previous election winner. 94% of constituencies
had an incumbent go up for re-election. Lastly, I compute the win margin as the differ-
ence in vote shares between the winning candidate (highest vote share) and runner up
(second highest vote share). Elections are quite competitive: half of elections in my sam-
ple were decided by margins < 10%. In the main analysis, I classify “close” elections as
those decided by margins within 2 percent.

Election data are at the constituency-year level whereas the eBird panel is at the user-
district-month level. I use the crosswalk provided in the SHRUG to link constituencies to
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districts. There are an average of 6 constituencies in a district. I aggregate win margins
and close-election dummies to the district level. The latter creates measures of “winning
party strength” i.e., the fraction of constituencies with close elections and with incumbent
winners. This strategy follows on previous studies that have studied electoral impacts by
aggregating over constituencies (Anukriti et al., 2022; Cole, 2009; Clots-Figueras, 2012)

S6.3 First Stage Variation

First-stage variation derives from the idea that incumbents target resources toward their
supporters (Dixit and Londregan, 1996)8. This, however, leads to a bundled estimate of
predicted projects: if voters prefer less deforestation, then incumbent winners may reduce
project approvals as a reward. At the same time, incumbents have been shown to increase
public investment overall (Khemani, 2004), which may involve approving more projects.
I control for nightlights to partially capture the investment channel, which leaves identi-
fication to rely on the assumption that, conditional on controls and fixed effects, district-
level incumbent strength affects local biodiversity only by sanctioning forest diversion
for infrastructure. I acknowledge this is a strong assumption. A second concern is that
estimates do not generalize to non-competitive districts. For these reasons, I view this
design as a check on coefficient sign rather than another set of main estimates.

8The literature distinguishes patronage i.e., awarding incumbent-supporting areas irrespective of politi-
cal goals, and tactical redistribution, which is to achieve political goals. I am agnostic about the motivations.
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