Tribal Forest Policy and Firm Behaviour

Raahil Madhok University of Minnesota Sabyasachi Das Ahmedabad University

> <ロト < 回 ト < 巨 ト < 巨 ト < 巨 ト 三 の へ ()・ 1/16

Table of Contents

Introduction

 $\mathsf{Context} + \mathsf{Model}$

Data

Empirical Strategy

Results

<ロト <回ト < 言ト < 言ト < 言ト 言 の Q () 1/16

How do firms react to tribal forest policy?

Past: indigenous-managed forests become state-controlled

- Present: "Land back" movement (USA/Can, Aus, India)
 Goal: protect indigenous livelihoods and promote conservation
- But, land restrictions have broader economic implications
- ▶ **This paper:** Do tribal forest restrictions ↓ firm activity?
 - Does it depend on land intensity of production?
 - What are the implications for forest conservation?

Roadmap

- Question: How do firms react to tribal forest policy?
- ▶ Idea: Model aggregate economic response and changes in firm composition
- **Setting:** India Forest Rights Act (2008)
 - Imposes transaction cost on firms
- **Data:** Manufacturing Census (2001-2015); Deforestation permits (2001-2021)
- **Empirical:** Difference-in-differences using policy shift in tribal and non-tribal districts

Roadmap

- Question: How do firms react to tribal forest policy?
- ▶ Idea: Model aggregate economic response and changes in firm composition
- **Setting:** India Forest Rights Act (2008)
 - Imposes transaction cost on firms
- **Data:** Manufacturing Census (2001-2015); Deforestation permits (2001-2021)
- **Empirical:** Difference-in-differences using policy shift in tribal and non-tribal districts

Results Preview

- 1) decline in firm activity, 2) less forest encroachment by industry,
- 3) larger, but less productive firms survive

Table of Contents

Introduction

 $\mathsf{Context} + \mathsf{Model}$

Data

Empirical Strategy

Results

<ロト < 回 > < 目 > < 目 > < 目 > < 目 > 3 / 16

Forest Rights Act (2008)

- Landmark legislation to recognize tribal land claims
- **Goal:** democratize forest governance
 - 1. formal forest titles to 200 million tribal peoples
 - 2. devolve forest management to Gram Sabha (tribal council)
 - 3. informed consent b/w developers and tribes
- Implication: administrative cost on developers
 - Approvals from potentially hundreds of landowners

Gram Sabha discusses nearby mining, Gadchiroli District (IUCN, 2019)

Forest Rights Act (2008)

- Landmark legislation to recognize tribal land claims
- **Goal:** democratize forest governance
 - 1. formal forest titles to 200 million tribal peoples
 - 2. devolve forest management to Gram Sabha (tribal council)
 - 3. informed consent b/w developers and tribes
- Implication: administrative cost on developers
 - Approvals from potentially hundreds of landowners

Gram Sabha discusses nearby mining, Gadchiroli District (IUCN, 2019)

What does this mean for industrial activity and conservation?

Model of Firm Behaviour

• If established, firm value: V(I,z) = zv(I), where $z \sim F(z)$

- p = land price; c(l) = administrative cost
- Establish firm if: $zv(l) \ge pl + c(l)$, or:

$$z \geq z^*(I,p)$$

Aggregate land demand:

$$D(p) = \int_0^{\bar{l}} l \left[1 - F(z^*(l, p)) \right] dl$$

• Equilibrium price p^* given by $D(p^*) = S(p^*)$

Introduction of Forest Rights Act

- $\kappa > 0$ is fixed cost of approval from tribal council
- ▶ New threshold productivity: $z^{**}(I, p) \ge z^*(I, p)$
- ► Aggregate demand ↓:

$$D^{FRA}(p) = \int_0^{\bar{l}} l \left[1 - F \left(z^{**}(l,p) \right) \right] dl < D(p)$$

► $z^{**}(I, p^{**}) = z^*(I, p^*) \Longrightarrow \hat{I} = \frac{\kappa}{(p^* - p^{**})}$ (critical size threshold)

Introduction of Forest Rights Act

- $\kappa > 0$ is fixed cost of approval from tribal council
- ▶ New threshold productivity: $z^{**}(I, p) \ge z^*(I, p)$
- ► Aggregate demand ↓:

$$D^{FRA}(p) = \int_0^{\overline{l}} l \left[1 - F \left(z^{**}(l,p)
ight) \right] dl \ < \ D(p)$$

►
$$z^{**}(l, p^{**}) = z^*(l, p^*) \Longrightarrow \hat{l} = \frac{\kappa}{(p^* - p^{**})}$$
 (critical size threshold)

Prediction: Firm Size Composition

▶
$$z^{**}(l, p^{**}) > z^{*}(l, p^{*})$$
 if $l < \hat{l}$: smaller mass of small firms

▶ $z^{**}(l, p^{**}) < z^*(l, p^*)$ if $l > \hat{l}$: larger mass of large firms

Table of Contents

Introduction

Context + Model

Data

Empirical Strategy

Results

<ロト < 回 > < 目 > < 目 > < 目 > < 目 > < 目 > の < で 6 / 16

Data (2001-2015)

Annual Survey of Industries

- Firm-level panel of all manufacturers
- \blacktriangleright N = 36,000 firms in each year
- District identifiers (restricted access)
- Variables: Labor, <u>land</u>, capital, output
- Separate land purchase from revaluation
 * summary statistics

Data (2001-2015)

Annual Survey of Industries

- ► Firm-level panel of all manufacturers
- ▶ N = 36,000 firms in each year
- District identifiers (restricted access)
- Variables: Labor, <u>land</u>, capital, output
- Separate land purchase from revaluation
 * summary statistics

Deforestation Permits

- Permits for infrastructure encroachment
- ▶ N = 43,000 projects; mean = 29ha.
- location: district identifiers
- Variables: category, forest area, date
- Panel: District-annual

summary statistics

Treatment: Tribal population share living within 1km of forest

- No data on # of FRA titles
- Instead, we make a proxy:
 - 1. clump forest grid cells into "patches"
 - 2. distance from village to nearest patch
 - 3. calculate tribal pop w/n 1km of forest
 - 4. aggregate to district

▶ treatment correlation

イロト イポト イヨト イヨト

Table of Contents

Introduction

Context + Model

Data

Empirical Strategy

Results

Empirical Strategy: Difference-in-Differences

$$\begin{aligned} Y_{idst} &= \alpha + \beta_1 (\textit{ForestPop}_d \cdot \mathbb{1}_{t > 2007}) + \beta_2 (\textit{TribalPop}_d \cdot \mathbb{1}_{t > 2007}) \\ &+ \Gamma X'_{dst} + \mu_i + \delta_o + \omega_n + \theta_t + \epsilon_{idst} \end{aligned}$$

• Y_{ist} = outcomes of firm *i*

• ForestPop_d = forest-dwelling tribal population; TribalPop_d = total tribal population

- $1_{t>2007}$ = policy shock; switches on in 2008
- ▶ μ_i = firm FE; θ_t = year FE; δ_o = ownership FE; ω_n = sector FE

Identifying Variation

Compare firms before/after FRA in districts with high/low forest-dwelling tribal population.

Identifying Assumption: Parallel Trends outcome: log(land value)

10/16

Table of Contents

Introduction

Context + Model

Data

Empirical Strategy

Results

Result 1: FRA reduces industrial activity

- Land Value $(p \times q)$ declines
- Output declines
- No change in land purchase
- ↑ productivity (ALP)

Result 2: Large firms less affected by FRA

	(1) Land	(2) New Land	(3) ALP	(4) Output
ForestPop _d x $1_{t>2007}$	-0.629***	-0.067***	0.763**	-0.205**
	(0.061)	(0.017)	(0.314)	(0.095)
$ForestPop_d \ge 1_{t>2007} \ge Large_i$	0.370***	0.123***	-0.619*	0.090
	(0.107)	(0.041)	(0.330)	(0.142)
TribalPop _d x $1_{t>2007}$	Yes	Yes	Yes	Yes
Firm FEs	✓	~	\checkmark	✓
Year FEs	\checkmark	\checkmark	\checkmark	\checkmark
Ownership FEs	\checkmark	\checkmark	\checkmark	\checkmark
Sector FEs	\checkmark	\checkmark	\checkmark	\checkmark
Observations	338585	332476	183797	269638
R ²	0.859	0.388	0.801	0.913

Land intensity of production \downarrow for large firms \rightarrow by ownership Consistent with $z^{**}(l, p^{**}) < z^{*}(l, p^{*})$ if $l > \hat{l}$

A D > A B > A B > A B >

What does this mean for forest conservation?

- **Data:** Deforestation permits applied for by developers in district *d*
- Identify conservation induced by behaviour of firms themselves
 - Rather than rely on aggregate satellite forest cover

What does this mean for forest conservation?

- **Data:** Deforestation permits applied for by developers in district *d*
- Identify conservation induced by behaviour of firms themselves
 - Rather than rely on aggregate satellite forest cover

We estimate:

$$Y_{dt} = \alpha + \beta_1 (\textit{ForestPop}_d \cdot \mathbb{1}_{t > 2007}) + \beta_2 (\textit{TribalPop}_d \cdot \mathbb{1}_{t > 2007}) + \Gamma X'_{dt} + \gamma_d + \theta_t + \epsilon_{dt}$$

- Y_{dt} = amount of forest earmarked for deforestation by industry
- Estimate separately by project category (mine, transportation, etc)

Result 3: Less forest diversion for industrial development

	(1)	(2)	(3)
Outcomes in Logs	Num. Submitted	Area Submitted	Area Approved
$ForestPop_d \times \mathbb{1}_{t > 2007}$	-0.694***	-0.181	-0.564
	(0.151)	(0.448)	(0.416)
$TribalPop_d \times \mathbb{1}_{t > 2007}$	Yes	Yes	Yes
District FEs	\checkmark	\checkmark	\checkmark
Year FEs	\checkmark	\checkmark	\checkmark
Observations	12264	12264	12264
R^2	0.914	0.839	0.821

Number of deforestation permits applied for by developers declines by 70% * event study

Result 4: Most sectors become more conservation "friendly"

🕨 project size

15 / 16

Conclusion

Three Main Findings

- 1. Tribal forest rights reduce firm activity in tribal areas
- 2. Less forest encroachment by industrial projects overall
- 3. Firm composition changes toward land-intensive, less productive firms

- Relevant for other countries considering tribal property rights
- Participatory institutions to govern surviving firms (afforestation, revenue sharing, etc.)

Thank You Contact: rmadhok@umn.edu Website: www.raahilmadhok.com

Treatment Correlation

	(1) ForestPop _d	(2) ForestPop _d
TribalPop _d	0.713*** (0.038)	0.551*** (0.053)
Outcome Mean State FEs	0.093	0.092 √
Observations R ²	584 0.763	580 0.855

$$ForestPop_{ds} = eta_1$$
 TribalPop_{ds} + $heta_s + \epsilon_{ds}$

Result: Over half of tribal population is forest-dwelling ...

ASI: Summary Statistics

	Observations	Mean	SD
Land	421175	99.06	5254.80
Land Purchase	421175	9.58	287.46
Capital	421175	1446.24	30936.38
Labor	383894	172.22	639.04
Output	322743	4835.14	100565.19

Deforestation Permits: Summary Statistics

	Num. Projects	Mean Size (ha.)	SD (ha.)	Total Area (ha.)
Defence	677	197.5	1,877.4	133,690.6
Electricity	5,248	25.3	244.5	132,990.2
Irrigation	3,152	26.6	123.7	83,801.7
Mining	2,445	176.6	1,594.2	431,843.6
Other	6,458	45.5	809.8	294,006.6
Services	4,097	2.3	38.0	9,277.0
Transportation	17,333	9.0	141.3	155,528.6
Underground	4,175	1.4	3.5	5,807.7
Total	43,585	28.6	559.2	1,246,946.0

Impacts on Additional Inputs

	(1)	(2)	(3)	(4)	(5)	(6)
	Land	New Land	ALP	Capital	Labor	Output
ForestPop _d x $1_{t>2007}$	-0.323***	0.009	0.179	-0.533***	-0.444***	-0.173**
	(0.059)	(0.021)	(0.149)	(0.075)	(0.060)	(0.082)
$\text{TribalPop}_d \ge \mathbb{1}_{t > 2007}$	Yes	Yes	Yes	Yes	Yes	Yes
Firm FEs	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Year FEs	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ownership FEs	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Sector FEs	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Observations	338585	332476	183797	338581	322614	269638
R ²	0.857	0.387	0.801	0.913	0.896	0.913

➡ back

Impacts by Ownership Structure

	(1)	(2)	(3)	(4)	(5)	(6)
	Land	New Land	ALP	Capital	Labor	Output
ForestPop _d x $\mathbb{1}_{t>2007}$	-0.299***	0.019	0.182	-0.502***	-0.456***	-0.196**
	(0.059)	(0.021)	(0.145)	(0.071)	(0.061)	(0.082)
ForestPop _d x $\mathbb{1}_{t>2007}$ x Public _i	-0.203	-0.102	-0.253	0.193	0.118	0.148
	(0.295)	(0.089)	(0.807)	(0.683)	(0.252)	(0.321)
$TribalPop_d \ge 1_{t>2007}$	Yes	Yes	Yes	Yes	Yes	Yes
Firm FEs	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Year FEs	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Sector FEs	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Observations	338585	332476	183797	338581	322614	269638
R^2	0.856	0.387	0.800	0.906	0.896	0.913

➡ back

Permit Data: Event Study

