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Abstract

Spatially targeted policies risk causing collateral damage to non-targeted areas, but
evidence on these spillovers is scarce. This paper documents the off-target effects of the
world’s largest place-based drug eradication effort—Colombia’s aerial glyphosate spray-
ing of coca fields—on legitimate agricultural production. Using a novel atmospheric dis-
persion model to construct a measure of wind-borne herbicide exposure, we show that
glyphosate drift reduces legal crop harvests by 13 percent in non-targeted municipalities.
The damage is persistent and adaptation is minimal in the medium run. After the 2015
fumigation ban, we show that legal crop production in previously-exposed municipali-
ties recovers only modestly, and where production does not recover, land use transitions
toward grassland and shrubland. As Colombia considers reinstating aerial spraying, our
policy simulations show that targeting only the largest coca hotspots could avoid $USD

611 million in spillover damages, equivalent to 3.7% of agricultural GDP.
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1 Introduction

Geographic targeting is a common policy tool to curb undesirable activities by focusing
enforcement on hotspots rather than individuals. From protected areas to urban crime-
reduction zones, such interventions are attractive because they allocate funds where the
marginal impact of enforcement is the highest (Gray and Shimshack, 2011). However, geo-
graphic targeting introduces a fundamental policy trade-off: it simplifies enforcement while
risking spillovers into neighboring areas (Hanson and Rohlin, 2013, 2021). These externali-
ties, whether economic, environmental, or social, often cross jurisdictional boundaries and
can dilute or even reverse policy objectives (Neumark and Simpson, 2015; Englander, 2023).
Measuring them is therefore crucial for evaluating whether place-based enforcement deliv-
ers net welfare gains or unintended harm.

The tradeoff between direct and indirect (spillover) effects is particularly salient in agri-
cultural enforcement. Spatially targeted efforts to curb unwanted vegetation can uninten-
tionally affect the livelihoods of households in nearby, non-targeted places (Camacho and
Mejia, 2017). Yet little is known about how far, and to what extent, geographic targeting
affects agricultural outcomes beyond targeted areas. Answering this question is important
for low- and middle-income countries where rural communities rely heavily on small-scale
agriculture for subsistence and income.

In this paper, we examine the off-target effects of the world’s largest place-based drug
eradication effort: Colombia’s aerial spraying of coca, the primary input in cocaine produc-
tion. Backed by U.S. funding under an initiative known as Plan Colombia, national authori-
ties sprayed glyphosate—a widely used and potent herbicide—from aircraft over coca fields
for over two decades. While glyphosate kills unwanted vegetation (Benbrook, 2016), it can
also cause harmful externalities as wind drift and water runoff carry the chemical beyond
intended targets (Rivas-Garcia et al., 2022; Dias et al., 2023).! At its peak, glyphosate was
sprayed over an area roughly the size of Los Angeles (Camacho and Mejia, 2017). After two
decades, and amid mounting health concerns, aerial spraying was suspended in 2015.

We use this setting as a natural experiment to answer two research questions: (i) to what
extent does glyphosate drift damage legal crop production in areas that were not targeted?
(i) did agricultural production in previously-exposed areas recover after coca spraying was
banned? By answering these questions, we quantify the spatial spillovers of place-based
enforcement as well as the dynamics of agricultural recovery.

The main empirical challenge in quantifying spatial spillovers is that coca spraying is not
random. Fumigation targeted coca-abundant areas, which systematically differ in terms of

!While some genetically modified (GM) varieties are less sensitive to glyphosate, adoption of GM crops in
Colombia during our study period was very low (< 1% of cultivated land) (Section 2.4)



cartel violence, institutions, and poverty. Naive comparisons between municipalities more-
and less-exposed to spraying would therefore confound off-target effects with these under-
lying differences. Estimating the causal effects of off-target spraying requires isolating vari-
ation in exposure that is orthogonal to place-based determinants of spraying.

We address this empirical challenge by computing a plausibly exogenous measure of
wind-driven exposure to spraying using a novel air particle transport model. We start by
digitizing maps from the UN Office on Drugs and Crime (UNODC) that contain all coca
plantations targeted by aerial glyphosate spraying between 2011 and 2015. We then deploy
the dispersion model to simulate 3D wind pathways of tracer particles emanating from each
sprayed area at the same altitude as the actual aircraft. The fraction of tracer particles land-
ing in a grid cell provides a continuous measure of a location’s wind-driven exposure to
herbicide drift. We run the model on a coca plantation-by-month basis for five years and
aggregate to the municipality-year level. This yields a plausibly exogenous measure of mu-
nicipalities” wind-driven exposure to aerial fumigation in a given year.

To estimate off-target damages from targeted spraying, we link our model-generated
exposure measure to panel data on legitimate crop production from municipal agriculture
surveys. This matched panel enables a credible two-way fixed effects (TWFE) design that
gives rise to credible control groups for municipalities exposed to aerial spraying: other
municipalities sharing similar characteristics, located equidistant to sprayed areas, but less
exposed due to plausibly random differences in wind drifts. In addition to estimating aver-
age treatment effects, we also estimate spillovers across crop types, test whether higher soil
quality and crop diversity buffer against glyphosate exposure, and characterize the dynam-
ics of adaptation using data on the adoption of glyphosate-resilient GMO crops.

Our main analysis yields three key findings. First, we document extensive damage to
legitimate, non-targeted crops from wind-driven exposure to aerial coca spraying. Munici-
palities more exposed to glyphosate drift experience 13% lower harvests (acres) compared
to less exposed municipalities, with similar reductions in crop output (tons) and revenue
($USD). We document a similar pattern of off-target crop damage in satellite-derived mea-
sures of vegetation quality. In a back-of-the-envelope calculation using these estimates, we
document that Colombia’s agricultural GDP growth was held back by half a percent due to
off-target crop damages from aerial fumigation.

Second, we document rich heterogeneity in spillover damages. Higher soil quality ap-
pears to cushion spillover damages from aerial spraying, whereas diversifying one’s crop
portfolio offers limited effectiveness as a stabilizer. We also document substantial hetero-
geneity across crop types. Spillover damages are largest for oilseeds, fibers, plantains, and
tree crops. However, when grouping crops into annuals versus perennials, we detect no

meaningful differences in spillover damages across the two groups.



Third, we find no evidence of adaption among farmers exposed to glyphosate drift in
the medium run. If farmers adopted herbicide-resistant varieties or showed other adaptive
behaviors, damages would diminish over time, producing a U-shape in lagged coefficients.
Instead, cumulative lag estimates show that damages to off-target crops are unchanged three
years later. We confirm this with municipality-level data on farm loans, using the idea that
farmers may adapt by allocating credit to adaptive investments. Yet we find no impact of
exposure to aerial spraying on farm credit. Lastly, we show the lack of adaptation more
directly using data on GMO crop adoption, although data is only available at the coarser
department level. We nevertheless find no correlation between exposure and GMO crop
shares. All three pieces of evidence point to limited adaptation.

To demonstrate robustness of our findings, we design a placebo test that simulates par-
ticle paths from non-sprayed coca farms. If our estimates were driven by pollution sources
other than coca spraying, then this would be captured by the placebo. Yet placebo exposure
has zero impact on legitimate agriculture, suggesting that our main estimates are driven by
glyphosate drift and not by other nearby pollution sources. Results are also stable when
controlling for the aerial fumigation of legitimate crops (e.g., bananas, rice), which we mea-
sure by obtaining fumigation flight permits.> Our estimates of negative spillovers also hold
under alternative administrative and remotely-sensed data sources. Lastly, the extent of neg-
ative spillovers is unchanged when we drop coca-growing municipalities from the sample
altogether, which ensures estimates are only identified off of wind-driven exposure rather
than place-based determinants of spraying.

Taken together, our findings from the Plan Colombia era provide new evidence that aerial
coca eradication imposed widespread negative externalities on the legitimate agricultural
sector. These adverse effects are especially concerning given that spraying was largely in-
effective at reducing coca cultivation, as growers developed adaptive techniques to shield
crops from herbicide exposure (Mejia, 2016). Large external costs and no private benefits
underscore clear inefficiencies in policy design. In 2015, President Juan Manuel Santos ter-
minated aerial spraying (in defiance of the U.S.), citing a World Health Organization decla-
ration about the harms of glyphosate exposure (New York Times, 2015). Ten years later, it
remains unclear whether undoing the policy reversed the damage already done.

In the second part of the paper, we extend the study period to 2018 and use a difference-
in-differences design to study whether the 2015 policy reversal led to agricultural recov-
ery, or whether collateral damage from Plan Colombia persisted even after aerial spraying
ended. Treatment intensity is measured by cumulative pre-policy exposure to glyphosate

and computed from the dispersion model. The intuition is that municipalities that were

2Standard agricultural fumigation differs from coca eradication in both flight altitude and herbicide con-
centration, which reduces the risk of glyphosate drift. See Section 2.1 for details.



highly-exposed (treated) to spraying during Plan Colombia have more “room for recovery”
once spraying stops, whereas non-exposed (control group) municipalities have nothing to
recover from. A positive coefficient therefore implies that harvested area rebounded at a
faster rate in previously-exposed (treated) municipalities than control municipalities.

Our difference-in-difference estimates show that the ban on aerial spraying caused a dif-
ferential increase in harvested area of legitimate crops, implying a process of agricultural
recovery in treatment municipalities. However, and perhaps more importantly, point esti-
mates are small and insufficient to reverse the damage already inflicted. Crop harvests in
treated municipalities increase by 2% after glyphosate spraying stopped, compared to the
13% decline in harvests during our study period. The magnitude of recovery remains small
even five years after the ban on spraying. Our estimates therefore imply that halting aerial
spraying reduced negative spillovers on legitimate agriculture, but that agricultural recov-
ery is slow and collateral damage on crops persisted well into the post-policy era.

Given the persistence of agricultural damages from the Plan Colombia era, the ques-
tion arises: what happened to the damaged cropland that failed to recover? We investigate
this using high-resolution land use classifications and estimate our difference-in-difference
model with the share of municipality land under various land types as the outcome. We
find that municipalities with higher prior exposure to glyphosate drift partly transition into
grassland and shrubland after spraying stops.

The paper concludes with a timely policy analysis. In April 2025, under renewed U.S.
pressure, the Colombian government announced plans to resume aerial fumigation (Tactics
Institute, 2025) after its decade-long ban. Using our retrospective estimates, we simulate
how much aggregate spillover crop damage can be avoided through smarter targeting the
second time around. We find that $USD 611 million of collateral damage on legitimate crops
can be avoided compared to business-as-usual if spray campaigns only target the largest
coca hotspots, all else equal. These savings are equivalent to roughly 3.7% of Colombia’s
agricultural GDP, representing substantial gains from simple policy changes.

Our main contribution to the literature is to credibly estimate externalities from spa-
tially targeted policy. A handful of studies have documented nearby spillovers from spa-
tially targeted policies to reduce crime (Blattman et al., 2021), overfishing (Englander, 2023),
and deforestation (Assuncao et al., 2023). We extend this work by documenting nationwide
spillovers from a related policy targeting illicit coca cultivation. Given that the direct ef-
fect of this policy was ineffective at eradicating coca (Mejia and Restrepo, 2016), quantifying
indirect effects (externalities) is important for informing optimal policy design.

Our second contribution speaks to the literature on the effects of pesticide exposure.
While the scientific literature (Agostini et al., 2020) and a growing body of economics litera-
ture (Camacho and Mejia, 2017; Frank and Taylor, 2022; Dias et al., 2023; Calzada et al., 2023;



Skidmore et al., 2023; Frank, 2024; Reynier and Rubin, 2025) document negative impacts of
pesticide exposure on human health, this paper is among the first to provide causal evidence
on crop health. In particular, we advance recent work on pesticide externalities, which has
emphasized behavioral and adoption responses (Larsen et al., 2024; Missirian, 2024; Coinon,
2025). In contrast, we quantify crop damages arising from off-target glyphosate drift.> These
results are important in the Colombian context, where agriculture employs 7.5% of the work-
force and smallholders grow 70% of domestic food (OECD, 2015).

We also depart from prior work by studying a distinct herbicide application method:
aerial spraying via aircraft at substantially higher altitudes and concentrations than conven-
tional agricultural use. The two closest studies from Colombia, Camacho and Mejia (2017)
and Horta-Sdenz and Tami-Patifio (2024), study direct impacts of aerial coca spraying on
health and education, respectively, within sprayed areas. We instead focus on crop health
and, more crucially, quantify spatial spillovers on non-targeted areas, extending the litera-
ture beyond direct impacts.

Our third contribution is methodological. We use recent advances in atmospheric model-
ing to measure crop exposure to glyphosate via wind drift. In doing so, we join an emerging
literature that uses dispersion models to trace particle drift (Heo et al., 2023; Morehouse and
Rubin, 2021; Hernandez-Cortes and Meng, 2023; Wen et al., 2023; Abman et al., 2024). While
this literature mainly models air pollution dispersion, we are the first in the applied eco-
nomics literature to use dispersion modeling to quantify spillovers of herbicide spraying on
non-targeted crops.

The next section provides necessary background. Section 3 describes the data and dis-
persion model. Section 4 outlines the empirical strategy for evaluating spillovers from aerial
spraying and Section 5 presents the results. Section 6 presents difference-in-difference esti-
mates of the impact of banning aerial spraying. Section 7 simulates avoided damages from

better targeting, and Section 8 concludes.

2 Background

This section discusses illicit coca cultivation in Colombia and the country’s main policy
response, known as Plan Colombia. We outline the key component of the Plan—aerial

glyphosate spraying—and associated risks of herbicide drift on non-targeted crops.

3Young et al. (2023) study yield losses and seed adoption responses to dicamba drift using a structural net-
work diffusion model informed by agronomic field trials, focusing on a different herbicide, crop, and setting.



2.1 Coca Cultivation and Eradication

Coca cultivation is the world’s largest illicit agribusiness (Rincén-Ruiz and Kallis, 2013),
with Colombia as the top supplier of coca leaves, the key input in cocaine production. In
2023, coca cultivation in Colombia reached 254,000 ha., roughly the size of Tokyo and the
highest level in two decades (UNODC, 2024). Despite domestic and international eradica-
tion efforts, coca farming remains persistent, prompting militarized state-led intervention.

Multiple factors explain coca’s resilience. Agronomically, the coca plant thrives in Colom-
bia’s fertile soils and favorable climate. Economically, the crop offers rural households a rare
combination of short cultivation cycles (6 to 7 months), stable market demand, and on-farm
sale to traffickers. In remote regions where infrastructure is sparse and state capacity limited,
coca remains one of the few reliable sources of household income.

Successive Colombian administrations have experimented with a wide range of coca
eradication policies, from voluntary crop substitution to forced manual removal. By the late-
1990s, aerial herbicide spraying became the dominant strategy (Tokatlian, 1995, 1998). This
approach was scaled up dramatically under Plan Colombia, a U.S.-backed counter-narcotics
and defense program launched in 1999. During the program, roughly $11.6 billion was
directed toward eradicating coca through large-scale fumigation campaigns and strength-
ening the Colombian military and police. The National Antinarcotics Police (DIRAN) led
fumigation missions, with logistical and security support from the military. Large aircraft
such as the T-65 Thrush and Air Tractor AT-802 (Solomon et al., 2005) sprayed herbicides,
while armed helicopter escorts deterred insurgent groups such as the FARC and ELN.

Glyphosate served as the primary input in aerial eradication campaigns. Chemically
known as N-(phosphonomethyl) glycine, glyphosate is a broad-spectrum, non-selective her-
bicide widely used in commercial agriculture (PAN, 2016; Benbrook, 2016). It works by dis-
rupting key biological pathways necessary for plant growth (Giesy et al., 2000; Tzanetou
and Karasali, 2020). Commercial formulations, such as Roundup, combine glyphosate salts
with surfactants to improve leaf absorption. In Colombia, the sprayed mixture included
Cosmo-Flux 411F (U.S. Department of State, 2002; Nivia, 2002; Hewitt et al., 2009), a surfac-
tant blend designed to enhance penetration through waxy leaf cuticles (Solomon et al., 2005).
While effective at increasing herbicidal potency, this formulation also raises the potential for
unintended uptake by non-target crops and increases the likelihood of collateral damage.

2.2 Wind Drift and Off-Target Damages

Herbicide drift occurs through three mechanisms: i) primary (spray) drift, when droplets
are carried by wind during application, (i) vapor drift, resulting from post-application

volatilization; and (iii) particle-bound drift, arising by post-application environmental pro-
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Table 1: Comparison of Glyphosate Application Rates
Concentration Total Glyphosate

Source Liters/ha (g/L) (Kg/ha)
Producer’s suggested dose 25 2.5 0.00625
Dose in spraying coca
Vargas et al. (2003) 23.65 158 3.73
Solomon et al. (2005) 10.40 480 4.99
Marshall et al. (2009) 10.45 354 3.70
MinAmbiente and MinSalud (2014) 23.65 211 4.99

cesses such as wind erosion (van den Berg et al., 1999; Bish et al., 2020). Although glyphosate
is non-volatile and therefore not subject to vapor drift (Franz et al., 1997), it remains suscep-
tible to spray drift during application and may also become airborne when attached to soil
or dust particles (Tzanetou and Karasali, 2020).

Several factors influence the extent of glyphosate drift: droplet size, nozzle height, wind
speed, atmospheric stability, and soil moisture (Jordan et al., 2009; Fritz et al., 2010; Bish et
al., 2020). Fine droplets (< 200 microns) are particularly prone to being carried downwind,
while dry soils exacerbate dispersion by promoting dust-bound glyphosate movement (Mef-
taul et al., 2021). Under intense precipitation events, rainfall can remove up to 97% of air-
borne glyphosate, redistributing it onto non-target surfaces (Chang et al., 2011). In aerial
applications, operational parameters also matter: higher aircraft speeds generate smaller
droplets (Hewitt et al., 2009), and doubling nozzle height can triple downwind deposition
(Butts et al., 2022). Field evidence indicates that low-altitude spraying (2-3 meters above
canopy) produces 3 to 8 times more drift than ground-based methods (Butts et al., 2022).*

Colombian fumigation operations exhibited conditions highly conducive to drift. Air-
craft often flew approximately 30-50 meters above ground (Solomon et al., 2005; DIRAN,
2020; U.S. Department of State, 2003), far higher than the 2-3 meter spraying altitudes in
conventional agricultural spraying. Although official protocols restricted spraying under
adverse conditions® and required coarse droplets, compliance proved difficult in practice
(Nivia, 2002). Moreover, despite GPS navigation and real-time weather monitoring, pilots
retained final discretion over mission parameters (Solomon et al., 2005).

Glyphosate application dosages also far exceeded conventional agricultural guidelines.®

Colombian technical assessments indicate that aerial fumigation involved effective discharges

“Despite mitigation efforts such as low-altitude flight and coarse droplets (>300 microns), glyphosate
residues have been detected up to 800 meters from target areas (PAN, 2016; Ravier et al., 2019).

SProtocols prohibit spraying after rainfall, wind speeds > 2 m/s, and humidity < 75% (Solomon et al., 2005)

®Marshall et al. (2009) shows that low glyphosate doses provide poor control of coca.



of up to 23.6 L/ha of RoundUp Ultra (Table 1), corresponding to a glyphosate concentra-
tion roughly 26 times higher than manufacturer-recommended use. The addition of sur-
factants”further amplified biological efficacy by up to a factor of four (Nivia, 2002), imply-
ing an effective biological impact exceeding conventional recommendations by more than
two orders of magnitude. The combination of exceptionally high application rates and ele-
vated flight altitudes makes it critical to understand the extent to which airborne glyphosate

drifted beyond its intended target and caused off-target damage in receiving regions.

2.3 The End of Aerial Spraying

Despite intensive fumigation campaigns under Plan Colombia, coca cultivation remains
persistent, casting doubt about the long-term effectiveness of chemical eradication poli-
cies. While operationally effective in delivering herbicide to targeted coca plots, mounting
complaints by rural households highlighted substantial risks (Defensoria del Pueblo, 2014).
Documented concerns included off-target herbicide exposure, excessive dosages, and signif-
icant harm to rural communities. These issues fueled public opposition and policy debate,
prompting skepticism about the strategy’s viability as a counter-narcotics tool.

Starting in the mid-2000s, accumulating evidence began linking glyphosate spraying to a
range of environmental and health impacts. Research documents contamination of drinking
water (Myers et al., 2016), damages to soil micro-biota (Dewar et al., 2000; Sanderson et al.,
1999), disruption of pollinator behaviors (Delkash-Roudsari et al., 2020), and impaired plant
nutrient uptake and seed germination (Blackburn and Boutin, 2003).

These growing concerns culminated in 2015, when Colombia officially banned aerial
coca spraying. The decision followed the World Health Organization’s classification of
glyphosate as a probable human carcinogen (International Agency for Research on Cancer,
2015). Whether the ban reversed the damages accrued over more than a decade of intensive
fumigation remains an empirical question. We answer this question in Section 6 and show

that damages persist several years after the policy ends.

2.4 Agriculture in Colombia

With this background, the remainder of the paper quantifies off-target effects of glyphosate
spraying on Colombia’s legal agricultural sector. We focus on agriculture for two reasons:
tirst, there is already a crowded literature documenting spillovers on human health (see Lit-
erature Review), whereas evidence on damages to crop health is limited. Second, agriculture

makes up 40% (44 million hectares) of Colombia’s land area, contributes 15% of GDP, and

7Cosmo-Flux 411F in Colombia.



employs roughly 7.4% of the workforce (OECD, 2015, 2023).

Colombia’s diverse landscapes feature a variety of crop systems potentially affected by
glyphosate drift. In the tropical lowlands, banana, cotton, soybeans, rice, and sugarcane
thrive. In mid-elevation temperate areas, farmers grow coffee, citrus fruits, papaya, flow-
ers, and beans, many of which are critical for the country’s (legal) agricultural exports.
Cooler highlands support cereals (e.g., wheat, barley, oats), vegetables, tubers (e.g., pota-
toes, yucca), and fruit trees. In Section 5.4 we estimate spillover damages separately by crop
type to understand which are more vulnerable.

The risk of glyphosate drift into non-targeted fields is especially acute because coca is fre-
quently inter-cropped with legal crops or grown adjacent to subsistence plots (Nivia, 2002;
Rincén-Ruiz and Kallis, 2013). Smallholders typically operate on narrow margins, and off-
target herbicide exposure can result in substantial yield losses. Field and community reports
document damage from fumigation campaigns to staple crops, such as plantains, yucca, and
rice, sometimes hundreds of meters beyond targeted coca fields (Nivia, 2002; Rincén-Ruiz
and Kallis, 2013; Defensoria del Pueblo, 2014; Consejo de Estado, 2021). In the empirical
analysis that follows, we use an atmospheric dispersion model to quantify spillovers from
aerial spraying onto non-targeted crops across the country.

While genetically modified (GM) crop varieties exhibit low sensitivity to glyphosate,
adoption is negligible during our study period and concentrated mainly in cotton (intro-
duced in 2003) and maize (introduced in 2007) (Brookes, 2020). In Section 5.5, we provide
evidence in that farmers did not adapt to glyphosate exposure by adopting GM varieties.

3 Data

We assemble several novel datasets to quantify spillovers from aerial coca spraying, includ-
ing locations of illegal plantations, digitized maps of sprayed fields, and municipal agricul-
tural surveys. Wind drift from aerial spraying is measured via an atmospheric dispersion

model. This section provides an overview of the data and dispersion model.

3.1 Main Data Sources
3.1.1 Illicit Coca and Aerial Spraying

We obtained 1km resolution maps of illicit coca plantations between 2011-2015 from the
UNODC Integrated Illicit Crops Monitoring System (SIMCI in Spanish). UNODC processes
and verifies raw imagery to distinguish coca from other crops. The final dataset measures
hectares of coca in a gridcell. Figure 1A (green) maps coca in the baseline year. About 20%
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Figure 1: Coca Plantations, Aerial Spraying, and Legitimate Agriculture (2011)

Note: Data are from 2011. In Panel A (left), green areas are coca and yellow are sprayed areas—all sprayed
areas had coca planted. Panel B (right) shows harvested area of legitimate crops across municipalities.

of municipalities grow coca, mainly in the North, West, and Central regions. The average
municipality cultivates about 3,300 ha. per year of coca (Table A1l).

To measure aerial spraying, we digitized SIMCI’s annual Coca Cultivation Survey maps
of sprayed areas from 2011 until 2015 (UNODC and Government of Colombia, 2011-2015).8
Shapefiles demarcate polygons sprayed during the year, but not the exact date of spray-
ing. Since our concern is wind drift from aerial spraying, these polygons serve as the point
source for our dispersion model (Section 3.2.1). Figure 1A (yellow) shows sprayed areas in
the baseline year: roughly 5,600 ha. per year was sprayed in the typical municipality, im-
plying that 60% of sprayed area was covered by coca fields (Table Al). Also note that not
all coca fields are sprayed, implying strategic targeting.” We account for this “place-based
endogeneity” by measuring the distance from each municipality to the nearest sprayed area

and controlling for this in all regressions (Section 3.1.3).

8In 2015, the Colombian government suspended the aerial fumigation program (see Section 6).
9The underlying variables used to select targeting areas are not publicly available, as the criteria employed
by the National Anti-Narcotics Police are classified.
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3.1.2 Legitimate Crop Production

To quantify spillovers from targeted herbicide spraying onto non-targeted crops, we use
detailed municipal-level agricultural data from the Ministry of Agriculture’s Evaluaciones
Agropecuarias Municipales (EVA) annual survey. This dataset reports planted area, har-
vested area, and output for 223 crops at the crop-municipality-year level, making it the
most granular and comprehensive sub-national agricultural dataset for Colombia. Figure 1B
maps harvested crop area: the typical municipality produces 44,000 tonnes of crops on 4,000
ha. of land (Table A1). The figure also shows that most coca grows outside agricultural hubs,
consistent with coca’s illicit status which pushes production to remote, hard-to-monitor ar-
eas. Yet, as we show in Section 3.2.1, coca hubs are connected to agricultural hubs via wind
drifts, exposing productive farmland to glyphosate through aerial coca spraying.

We calculate the economic value of agriculture using crop price data from FAOSTAT. This
database provides prices received by farmers in $USD/tonne at the national level. First, we
identify 51 crop categories grown in Colombia for which FAOSTAT price data are available.
For each category-year, we compute annual revenue by multiplying its 2011 price (to express
values in constant USD) by total production in tons. Next, we aggregate crop revenues at
the municipal level to obtain total agricultural revenue per municipality per year.

To validate our survey-based estimates, we complement the administrative crop data
described above with satellite measures of crop productivity. First, we use the Normalized
Difference Vegetation Index (NDVI), a widely used measure of vegetation health, obtained
from MODIS at 1km resolution (Didan et al., 2015).19 Second, we use remotely-sensed land
classification maps at 300m resolution from the European Space Agency (ESA). We use the
cropland layer, which indicates if a pixel has rainfed, irrigated, or mosaic crops (small-scale
agriculture interspersed with natural vegetation). To obtain a municipality-level measure,

we extract means over cells within a municipality, weighted by cell overlap fraction.

3.1.3 Covariates

We include two sets of covariates in all our regressions. The first set accounts for the en-
dogenous spraying decision and includes coca area and distance to the nearest sprayed area.
Coca area (Section 3.1.1) accounts for the fact that places with more coca are more likely to
be sprayed. The straight-line distance from the centroid of each municipality to the nearest
sprayed area thus controls for other unobserved determinants of spraying.

The second set of covariates include temperature and rainfall, which partially guide wind

drifts and can affect agriculture directly (Yuan et al., 2023). Annual temperature (°C) and

19Since NDVI also captures forests, we control for forest cover in all regressions with NDVI using forest
cover data from the Vegetative Continuous Fields (VCF) gridded data product (Townshend et al., 2017).

11



rainfall (mm) are from the ERAS5 product at 0.125° resolution (Hoffmann et al., 2019). In a
robustness test (Section 5.3), we augment this set with additional meteorological controls,
including energy flux, planetary boundary layer height, humidity, and velocity, and find
no changes in our estimates. For all gridded data, we extract means over cells within a

municipality, weighted by cell overlap fraction.

3.2 Measuring Wind-Driven Exposure to Aerial Herbicide Spraying

Our task is to measure the exposure of a municipality to aerial spraying. Our starting point is
the fact that aerial pesticide spraying is prone to particle drift and volatilization once applied
(Boonupara et al., 2023; Cederlund, 2017; Gandhi et al., 2021). To measure the movement of
airborne pesticides, we use an atmospheric dispersion model that simulates the most likely

drift pathways from a source location.

3.2.1 The HYSPLIT Dispersion Model

We use the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model de-
veloped by NOAA (Draxler and Hess, 1998; Draxler et al., 2020) to measure municipalities’
exposure to aerial spraying via wind drift. The model simulates three-dimensional move-
ment of tracer particles released from a point source—in our case, the location sprayed. Tra-
jectories are primarily driven by wind, but also incorporate other meteorological data.!! As
described in the next subsection, we measure a municipality’s exposure to aerial spraying
by the share of tracer particles originating from sprayed areas landing within its borders.

The primary advantage of measuring exposure in this way is that we can precisely mea-
sure spillovers from aerial spraying. Since tracer particle paths from sprayed locations can
pass over and deposit in municipalities that were not directly sprayed, these non-sprayed
municipalities are exposed to glyphosate entirely through wind-driven spillovers. Whether
these spillovers lead to legitimate crop damage is the central question of this paper.

There are several related advantages of using a dispersion model. First, the shape, size,
and diffusion rate of dispersion plumes are entirely model-generated. In contrast, tradi-
tional wind direction vectors require assuming an arbitrary length and plume, often a 45°
cone around the vector. Second, our measure can be cumulated to any spatial or tempo-
ral level without loss of information, which becomes important when defining treatment
and control groups in our difference-in-difference design (Section 6.1). Conventional wind
vectors capture seasonal variation in wind direction, which loses explanatory power when

averaged over multiple years. Lastly, since our exposure measure is continuous, we can

HYSPLIT also uses temperature, planetary boundary height, surface pressure, velocity, surface roughness,
heat flux, short wave flux, humidity, convective energy, and precipitation (Draxler and Hess, 1998).
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Figure 2: HYSPLIT Output (January 2011)

Note: Panel A shows HYSPLIT particle trajectories on January 1st, 2011 from three example sprayed areas
(yellow). Colors denote where particles end up in each hour. Panel B shows municipality exposure (E;;; in
Equation 2) to coca eradication in 2011.

group similar values into “plumes” and correct for spatial error correlation by clustering at

the plume level. This enables more precise estimation of standard errors.

3.2.2 Measuring Exposure to Aerial Spraying

Step 1: Dispersion The first step for computing exposure to aerial spraying is to measure
wind drift from each sprayed area. We generate a 0.1° grid over Colombia and set the cen-
troid of each sprayed area (Figure 1A) as the point source.!? Next, from each point source,
we set HYSPLIT to emit a default number of tracer particles from 50m height for 24 hours,
once a month, from 2011-2015.1*> We do this in the absence of data on the exact days that
spraying took place. Running the model once a month enables us to calculate average statis-
tics of wind drift over the year. While less precise than if we knew the day of spraying, using
annual averages of wind direction is commonplace in the literature.

Figure 2A shows hourly tracer particle locations from an example spray in 2011. Note
that these particles do not represent glyphosate per se—they are tracers that draw the mostly
likely path that any particle from the point source would take given HYSPLIT meteorology
assumptions. We implement placebo tests in Section 5.2 to rule out other emission sources in
the sprayed area, strengthening the case that particle paths trace glyphosate drift. After each
model run, we measure exposure of a gridcell as the downwind count of tracer particles,

ParticleCount;j;, landing in receptor grid cell i, originating from spray location j at time ¢.

12For big spray areas (>95th pctile), we randomly sample 5 points on the polygon as the point sources.
1350m is the typical height at which aircrafts drop glyphosphate (U.S. Department of State, 2003)
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Step 2: Normalization The second step is to normalize ParticleCount;j; to one and then

sum over model runs j in each year, adjusting for differences in sprayed area, SprayAreaj;:

CellExposureyy = Y

( ParticleCountj;
jedr

Y. ParticleCount . SprayAreajt> @

Since we sum over all sprayed areas j in a year t, Cell Exposure;; measures the total mod-
eled exposure of gridcell i to aerial spraying in that year. This measure also accounts for the
fact that larger spray zones pose greater potential for exposure. CellExposure;; can be inter-
preted in ha., since Spray Areaj; is effectively distributed across gridcells according to cell i’s
exposure intensity, which ranges from zero to one. For example, if the area sprayed is 100
ha., and the exposure of far-away grid cell i is 0.01, then it is as if 1 ha. of coca was sprayed

in gridcell 7, even though it may have no coca. This is how we capture spillovers.

Step 3: Aggregation The third step aggregates at the municipality-year level. Municipality
m’s exposure to spraying in year t is the sum of modeled exposure across gridcells i € m:

Emt := Z CellExposurej; (2)
iem

Ey is the main explanatory variable in the first part of the empirical analysis. Fig-
ure 2B visualizes this variable in 2011. Again, note that E,; does not measure exposure
to glyphosate per se, but rather wind drift into municipality m from locations where coca
was sprayed with glyphosate. Since sprayed coca fields are often in very remote places with
little other economic activity, it is unlikely that E,;; captures exposure to any other airborne
pollutant besides glyphosate. We confirm this with several placebo tests in Section 5.2.

The underlying variation in E,; arises from three sources. First, spatial variation arises
from physics formulae for gas movement and diffusion as modeled by HYSPLIT. A second
source of spatial variation comes from the size of the area sprayed. Holding meteorology
constant, the spraying of larger coca plantations generates greater exposure due to the area-
weighting in Equation 1. Third, temporal variation arises from embedded formulae that de-
scribe the dynamics of particle transport. Importantly, both spatial and temporal variation
depend on the location sprayed and can change when new plantations are targeted or pre-
vious spray campaigns are halted. This means that exposure is only plausibly exogenous
conditional on spraying, since the choice to spray a location is strategic. To account for this,

we control for distance from a municipality to the nearest sprayed area in all our regressions.
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4 Empirical Strategy

This section describes our research design for estimating spillovers from aerial coca spray-
ing. We use a two-way fixed effects (TWFE) design to compare agricultural outcomes within
municipalities at varying levels of wind-driven exposure to aerial coca spraying, controlling
for strategic targeting of coca plantations. This design exploits rich cross-sectional and tem-
poral variation, giving rise to credible control groups for municipalities exposed to spraying;:
other municipalities with similar geographic characteristics, located equidistant to sprayed
areas, but less exposed to them due to plausibly random differences in wind drifts.

Figure 2 provides visual intuition for our empirical strategy. Consider the experience of
San José del Palmar and Sipi, two remote municipalities near the West coast. Both grow
coca (Panel A, green), yet neither experienced aerial eradication in 2011 (Panel A, yellow).
Moreover, they are both equidistant to the nearest sprayed area, meaning that they likely
share similar determinants of spraying. Despite similar exposure potential, proximity, and
geography, the two municipalities face drastically different exposure to the nearby spray
campaign. San José lies directly in the exposure path of the southernmost sprayed area,
whereas Sipi is completely unexposed. These differences can be seen even when aggregating
exposure at the annual level (Figure 2B). Because differences in exposure arise from plausibly
random wind patterns conditional on the decision to spray, we can use this variation to estimate
the causal impact of downwind exposure to aerial eradication.

4.1 Main Estimating Equation

Our estimation strategy generalizes the visual intuition described above. We quantify spillovers

from targeted coca spraying on off-target crops with the following equation:
LOg Ymt = [5 . Emt + X;ﬂtQ + Xm + Yt + €mt (3)

where m indexes municipalities and t indexes years between 2011-2015. Y},;; denotes the
logarithm of the harvested area in municipality m at time t. We also estimate versions where
Y,,+ measures output, revenue, and satellite measures of crop health. E;;; measures m’s ex-
posure to aerial herbicide spraying during year t (Equation 1). X/, is a vector of covari-
ates including temperature, rainfall, and distance from m to the nearest sprayed area. The
distance control is crucial and ensures comparisons are made between municipalities with
similar characteristics that determine the choice to spray it (Section 3.1.3). All specifications
include municipality and year fixed effects, a;,, and <y, respectively.

The coefficient of interest is 8, which captures the percentage change in agricultural out-
comes from an additional hectare of wind-driven glyphosate exposure. B < 0 indicates
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negative spillovers, consistent with targeted aerial coca spraying harming off-target crops
via wind-driven glyphosate drift.

We cluster €,,;; at the plume level. We choose this level of clustering since gridded values
of CellExposure;; are likely to be spatially correlated through unobserved formulae used by
HYSPLIT that govern gas movement. Plumes are demarcated using a k-means clustering
algorithm that groups cells with similar exposure values. Municipalities spanned by the
same plume are assigned a common cluster ID and those spanned by multiple plumes are
assigned the cluster with the largest overlap. We demarcate 50 plumes in the main analysis
and test robustness to alternative numbers of clusters in Section 5.3. We also document

robustness of our results to the computation of Conley standard errors.

4.2 Identification

Identification of B relies on the assumption that exposure is orthogonal to unobserved de-
terminants of crop output, once we control for municipality and year fixed effects. There are
four key threats to this assumption. First, the decision to spray a coca field is endogenous.
We therefore control for distance to the nearest sprayed area to account for the determi-
nants of spraying. Second, conditional on distance to the nearest sprayed area, differences
in weather between treatment and control municipalities may affect particle trajectories as
well as crop yields directly. We thus include temperature and rainfall in X],; to avoid po-
tential omitted variable bias. Third, since our exposure measure is based on wind paths,
it may inadvertently capture pollution from other nearby sources such as energy, vehicles,
or biomass burning. To rule out these alternative pathways, we provide robustness checks
that show null impacts of exposure on PM; 5, SO,, and NO; (Section 5.3). Lastly, some
municipalities might be coca hotspots, crowding out legitimate agriculture and making the
municipality more exposed to drift. We drop sprayed municipalities in a robustness check
and show that our identification is based only on our measure of indirect exposure; our
estimates are qualitatively unchanged.

B is estimated via OLS in a TWFE setup with continuous treatment. This estimator suits
our context because some municipalities receive continuous “doses” of exposure in each
period, whereas others are untreated. B thus represents a dose response to exposure at the
municipality level and is best interpreted as the slope of the dose-response curve. A key
concern with continuous treatment is that treatment intensity may itself be an endogenous
choice by units, which can bias the TWFE estimand (Callaway et al., 2024). In our context,
exposure intensity is not chosen by municipalities or farmers. Conditional on the decision of
the government to spray a coca field (which we control for), municipalities” exposure to the
resulting glyphosate drift is determined by atmospheric processes. Municipalities thus do
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Table 2: Agricultural Spillovers from Coca Eradication

(1) (2) 3) 4) ®)
Area Area Output Revenue NDVI
Exposure (ha.) -0.131** -0.132** -0.125** -0.139*** -0.014**
(0.055) (0.057) (0.050) (0.039) (0.005)

Coca Controls No Yes Yes Yes Yes
Climate Controls Yes Yes Yes Yes Yes
Forest Cover No No No No Yes
Municipality FEs v v v v v
Year FEs v v v v v
Observations 5610 5610 5610 5610 5610

*p <1, p <.05 ** p <.01. Data are at the municipality-year level. Outcomes are in logs. “Coca Controls”
include distance to nearest sprayed area and hectares of coca. “Climate Controls” include temperature and
rainfall. “Exposure” to aerial spraying is measured in hectare-equivalents. All specifications include munici-
pality and year fixed effects. Standard errors clustered at the plume level.

not select into higher or lower doses, nor can they adjust behavior to influence exposure.'*

5 Results: The Plan Colombia Years

This section quantifies off-target impacts of targeted aerial coca spraying. We find that aerial
spraying damages off-target crops via glyphosate drift, resulting in large revenue losses
for farmers. We first present our main estimates and then investigate whether crop health

rebounded after aerial spraying was banned in Section 6.

5.1 Main Results

Table 2 presents estimates of Equation 3. We explore a variety of agricultural outcomes
from administrative data and then validate our estimates with satellite data. The primary
outcome is log harvested area (column 1 and 2). We find f < 0: wind-driven exposure to
targeted aerial coca spraying damages off-target crops. This result is robust to controlling for
proximity to the nearest sprayed area and weather (column 2), implying that our estimates
are not driven by endogenous determinants of spraying nor by direct effects of weather.
The point estimate in column 2 implies that an additional unit of exposure to aerial spraying

during the year causes a 13.2% reduction in harvested crop area.

145till, we assess whether our results could be driven by comparisons across different exposure intensities,
as cautioned by Callaway et al. (2024). The resulting effects are qualitatively consistent with our baseline
estimates. See Appendix B.
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To put this estimate in perspective, consider the fact crop harvests in the average mu-
nicipality increased by 273 ha. during the study period, implying a pattern of agricultural

growth across Colombia. At the same time, the average municipality was exposed to an
(0.067x —0.132)

equivalent of 0.067 ha. of airborne glyphosate via wind drifts, translating into e =
0.99 ha. in crop damages. Therefore, agricultural expansion suffered a 0.99/273 ~ 0.4% set-
back due to spillovers from coca eradication between 2011-2015.

Columns 3 and 4 explore sensitivity to alternative outcomes: log output (tonnes) and log
revenue, respectively. Revenue is a weighted average of individual crop output and cor-
responding national prices (Section 3.1.3). Exposure to aerial spraying reduces output and
revenue by magnitudes similar to the decline in harvested area. Column 5 validates our es-
timates with satellite-derived NDVI, a measure of vegetation health based on light absorbed
by plants. Since NDVI measures both crops and forests, we control for forest cover in this
specification to isolate effects on crop health. We continue to observe negative spillovers of
aerial spraying on crop health, reinforcing our main estimates and providing reassurance

that they are not driven by biases in administrative data collection.

5.2 Falsification Tests: Does Exposure Capture Glyphosate Drift?

Recall that modeled exposure (Equation 1) is based on wind drifts from areas sprayed with
glyphosate, not actual glyphosate concentrations. We thus present two falsification tests
to validate that observed damages to off-target crops (Table 2) are driven specifically by
glyphosate exposure and not exposure to other airborne pollutants.

First, we simulate wind drifts from 200 randomly selected coca farms that were not
sprayed with glyphosate!®, following the same modeling approach in Section 3.2. This gen-
erates a placebo measure of municipality m’s exposure to non-sprayed coca farms in time
t. If our main estimates are driven by glyphosate drift from aerial spraying, then exposure
to non-sprayed areas should have no impact on off-target crops since there is no glyphosate
drift associated with the placebo. On the other hand, if our main exposure measure cap-
tures other nearby emission sources (e.g. power plants, coca processing), then we should
see negative spillovers on agriculture even through placebo exposure.

Table A2 presents estimates where we directly control for placebo exposure in the base-
line equation. Both exposure measures are reported in standard deviations to account for
differences in measurement. The placebo coefficient is near-zero and statistically insignifi-
cant for all outcomes, whereas the main coefficient of interest remains negative and signif-

icant. This exercise validates our exposure measure and builds confidence that our main

15We sample 200 placebo farms to balance computational time and statistical precision. HYSPLIT is run on
each farm using the steps in Section 3.2, with coca area as weights (Equation 1) instead of spray area.
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estimates are not driven by other emissions sources or air pollutants.

Second, we provide additional evidence that our exposure measure does not entangle
other pollutants by directly estimating impacts on SO, (associated with energy genera-
tion), NO, (associated with vehicle emissions), and PM; 5 (associated with biomass burn-
ing). Anecdotally, this endogeneity concern is minimal since coca plantations are set up far
from human activity. Econometrically, if exposure is orthogonal to concentrations of these
three pollutants, we can rule out alternative pollution pathways and become more confident
that glyphosate drift is the key mechanism driving spillover crop damage.

Columns 1-3 of Table A3 show a near-zero and statistically insignificant impact of wind-
driven exposure to aerial spraying on ambient PM; 5, SO,, and NO, levels!®. Since the dis-
persion model measures wind paths from the exact locations sprayed, and there is no rela-
tionship between exposure to these locations and ambient pollution, it is hard to imagine

any other reason driving crop damage in Table 2 besides glyphosate drift.

5.3 Additional Robustness Checks

Table A4 tests robustness to alternative specifications (column 1-4), alternative data sources
(columns 5-6), and sample restrictions (columns 7-8).

A key concern is that factors other than coca eradication could drive both glyphosate ex-
posure and agricultural outcomes. One possibility is that legitimate crop fumigation for rice,
bananas, and other crops, could independently affect agriculture while correlating spatially
with our exposure measure. Column 1 addresses this by controlling for the number of non-
coca fumigation flights potentially crossing each municipality, constructed from AeroCivil
permit data on flight dates and airport coordinates.!” The coefficient is virtually unchanged,
consistent with legal agriculture fumigation usually being conducted at substantially lower
altitudes and with smaller doses than aerial coca eradication (Section 2.2).

Another concern is that the meteorological conditions determining particle paths may
also affect crops directly. Column 2 addreses this by augmenting our baseline controls with
energy flux, planetary boundary layer height, wind velocity, and humidity.'® The coefficient
remains the same, suggesting that weather conditions are not confounding our estimates.

Columns 3 and 4 investigate whether unobserved spatial or temporal heterogeneity drives
our results. Column 3 adds department-year fixed effects to account for differential agri-

cultural trends across departments. The coefficient remains within the confidence interval

16Gridded PM2.5 is obtained from Van Donkelaar et al. (2016). Gridded SO2 and NO2 is obtained from the
MERRA-2 and HAQSTAT reanalysis products, respectively.

17We assume that legal fumigation is carried out on similar aircrafts as coca fumigation. Through discussions
with Antinarcotics officers, Reyes (2014) find that fumigation planes have a range of 80 miles.

18These data are from the MERRA-2 reanalysis product M2T1NXFLX files.
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of the baseline estimate, which is unsurprising since exposure is plausibly orthogonal to
department characteristics. Column 4 adds linear municipality time trends to control for
unobserved factors that vary at a constant rate over time. The coefficient is very similar.

Column 5 documents robustness to an alternative satellite-derived measure of cropland
extent to complement NDVI. Cropland percent is measured from ESA maps (Section 3.1.2)
and include irrigated crops, rainfed crops, or small-scale cropland interspersed with natural
vegetation. The coefficient remains negative and statistically significant.

Another important threat to the identification strategy is place-base endogeneity: coca
rich-areas are more likely to be sprayed and thus mechanically more likely to be exposed, po-
tentially confounding wind-driven exposure with unobserved characteristics of coca-growing
regions. We address this concern in columns 6 and 7. Column 6 applies a 30km mask around
the centroid from which the dispersion model is run.!” This removes places in the vicinity of
the sprayed area which may feature unobserved characteristics that co-determine spraying,
exposure, and agriculture, thereby helping isolate wind-driven exposure. Column 7 adopts
a more extreme approach by excluding all sprayed municipalities from the sample, which
leaves the coefficient to be identified solely off of wind drift rather than endogenous coca
eradication. We continue to find strong evidence of negative spillovers in both cases.

Finally, table A5 reports estimates from alternative methods of inference. Recall that our
baseline estimates cluster at the plume level using machine learning to demarcate 50 plumes
(Section 4.2). While also arbitrary, column 1 tests robustness to demarcating 30 plumes in-
stead. Column 2 clusters by municipality, the same level as the treatment. Columns 3-6
investigate spatial correlation more systematically by estimating Conley (1999) standard er-
rors for kernel cut-off distances ranging from 200km to 500km.?° Statistical precision of our

estimates are robust to these alternative methods of accounting for spatial correlation.

5.4 Treatment Heterogeneity: Soil Quality and Crop Diversity

We next investigate whether better soil quality and greater crop diversity can minimize
spillover damages to off-target crops. While both of these offer a “nature-based solution”
for reducing climate-driven risks of crop failure (Renard and Tilman, 2019; Renard et al.,
2023), there is little evidence on their success as a stabilizer against other extremes such as

glyphosate drift. We estimate treatment heterogeneity with the following equation:

Yt = B1* Emt + B2+ (Emt - Sm) + X, Q + & + vt + €t 4)

where m and t are indices for municipality and year, respectively. We estimate one ver-

9The mask deletes grid cells within 30km of the point source during calculation of E; (Equation 1)
20We use the Colella et al. (2019) implmenetation with the acreg stata package.
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Table 3: Heterogeneity by Soil Quality

(1) 2) 3) 4)
Area Output Revenue NDVI
Exposure (ha.) -0.964** -1.030** -0.906*** 0.006
(0.459) (0.421) (0.302) (0.017)
Exposure (ha.) x Soil Quality 0.027* 0.029** 0.025** -0.001
(0.015) (0.014) (0.010) (0.001)
Coca + Climate Controls Yes Yes Yes Yes
Forest Cover No No No Yes
Municipality FEs v v v v
Year FEs v v v v
Observations 5610 5610 5610 5610

*p<.1,* p <.05 ** p <.01. Data are at the municipality-year level. Outcomes are in logs. “Coca Controls”
include distance to nearest sprayed area and hectares of coca. “Climate Controls” include temperature and
rainfall. “Exposure” to aerial spraying measured in hectare-equivalents. All specifications include municipal-
ity and year fixed effects. Standard errors clustered at the plume level.

sion of this equation where S, measures baseline soil quality using gridded data on soil clay
percentage for Colombia?!, and another version where S,, measures the Shannon Diversity
Index, which we calculate from the EVA data as the number of crop species weighted by
relative planted area. All other terms are the same as Equation 3. B, is the coefficient of
interest and is positive if soil quality or crop diversity buffers against glyphosate drift.

Table 3 presents estimates of B, for soil quality. Higher soil quality cushions the damage
from glyphosate drift on off-target crops. The point estimate implies that a one percentage
point increase in clay composition mitigates the adverse impact of aerial spraying on har-
vested area by 0.027/0.964 ~ 3% (column 1). Soil quality exhibits a similar mediating effect
for output (column 2) and revenue (column 3). We find no heterogeneous effects for NDVL

Table A6 presents estimates of B, for crop diversity. Qualitatively, crop diversity buffers
against negative spillovers from aerial spraying, but estimates are imprecise. Table A7 tests
robustness using species richness, an alternative diversity metric measured as the number
of unique crops without weighting each one by relative planted area. Again, we document
a moderating role of crop diversity, but precision remains low. These results suggest that,
while crop diversity has been shown to increase resilience against climate-driven extremes,
diversification may not work against other extremes such as glyphosate exposure.

Lastly, we test whether annual or perennial crops are more resilient. Annual crops have

seasonal lifecycles and may be more vulnerable to short-term stressors, whereas perennials

21Data accessible here: https://essd.copernicus.org/articles/14/4719/2022/.
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Figure 3: Dynamic Estimates

Note: The outcome is log harvested area. “Baseline” repeats the main result. “Sum L0-L1” adds the first lag
of exposure to the main specification and reports the sum of coefficients on the first lag and baseline effect.
“Sum L0-L2” sums up to the second lag, and so on. Bars are confidence intervals. All regressions control for
distance to nearest sprayed area, hectares of coca, temperature, rainfall and municipality and year fixed effects.
Standard errors clustered at the plume level.

grow over multiple years and have better regenerative capacity. Table A8 presents estimates
of Equation 3 for nine types of annual crops, with log harvested area as the outcome. Dam-
ages from glypohsate spillovers are most pronounced for oil seeds, fibers, and an “other”
category defined by EVA that we are unable to unbundle. Table A9 shows estimates for
perennials: negative spillovers are strongest for plantains and tree crops. Yet, when cat-
egories are combined (column 1), effects on both crop groups are small and insignificant.
These results suggest limited heterogeneity; both annuals and perennials appear susceptible

to damage from glyphosate drift.

5.5 Adaptation: Dynamics, Farm Credit, and GMO Varieties

Our estimates thus far reflect off-target crop damage from aerial coca spraying within the
year. They are also net of adaptation, which occurs if exposure prompts the adoption of
herbicide-resistant crops. However, adaptation would bias g upwards, counter to the idea
of negative spillovers. In other words, the fact that we find < 0 in Table 2 means that our
estimates hold in spite of adaptation and not because of it.

Although adaptation is not widespread enough to overturn our result, we can still di-
agnose the extent of adaptive behavior by studying dynamic effects. Figure 3 presents es-
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timates of Equation 3 with lags up to three years. White diamonds are the sum of baseline
and lagged coefficients, which measures net impacts of exposure to aerial spraying several
periods later. If exposure prompts adaptive investments, then a U-shape should arise as
negative effects become muted over time.

Instead of a U-shape, we find that damages to off-target crops are persistent. Cumulative
damages two years later (Sum “L0-L2”) are nearly equal to the baseline effect. While the
extent of negative spillovers increases three years later, we cannot reject the null hypothesis
that coefficients are equal since confidence intervals overlap point estimates across all peri-
ods. The more important takeaway is that negative spillovers are persistent and adaptation
appears minimal in the medium run.

Table A10 investigates whether the lack of adaptation is reflected in farmers’ investment
behavior using farm credit data from EVA. Since adaptation requires upfront expenses, in-
creased credit uptake in exposed municipalities can signal adaptation. Each column reports
estimates of Equation 5 where the outcome measures credit disbursed to small, medium,
and large farm operators in a municipality. While exposure weakly increases total credit
provision (column 1), there are no impacts on individual producer groups (columns 2-4).
These results suggest that farmers may be unable to adapt due to limited microcredit access.

The most direct test of adaptation is whether farmers shift to glyphosate-tolerant GMO
crops. In the absence of municipality-level data, we obtained coarser department-year data
on GMO maize and cotton through a Freedom of Information Request. Table A11 presents
estimates of Equation 3 at the department level, where the outcome is GMO crop share. Since
exposure is at the department level, we lose the ability to exploit plausibly exogenous varia-
tion in wind drift across similar municipalities. We find no correlation between exposure to
aerial spraying and GMO crop adoption, suggesting limited adaptation at the department
level. This aligns with the dynamic estimates and farm credit results.

6 The Ban on Aerial Spraying

Having established clear negative externalities from aerial spraying, the logical policy pre-
scription is to ban the practice and find alternative ways to curb illegal coca production.
Indeed, the Government of Colombia suspended aerial spraying in May 2015, citing the
protection of population health and environmental conservation (El Consejo Nacional de
Estupefacientes, 2015). This section evaluates whether the policy was effective at revitaliz-
ing the agricultural sector by reducing damage to off-target crops.
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6.1 Policy Evaluation: Difference-in-Differences

We use a difference-in-differences design to study the impact of banning aerial spraying in
2015. Treatment is defined as a continuous variable measuring pre-policy cumulative expo-
sure to aerial spraying, Ey, := Y 2013 Emt, where E,; is defined in Equation 1. Interacting E,,
with a post-policy indicator generates two sources of variation that we exploit for identifi-
cation: (i) geographic variation in pre-policy exposure to aerial coca spraying across munic-
ipalities (Figure A1), and (ii) time variation in crop production before and after the ban. Our
difference-in-difference strategy thus compares crop health across previously exposed and

less-exposed municipalities, before and after the ban with the following equation:
Yint = 0 (Em - Li>2015) + X Q + ttm + 71 + €y (5)

where m and t are indexes for municipality and year, respectively. Agricultural outcomes of
interest are the same as Equation 3. E;; denotes the treatment, i.e., cumulative exposure of
municipality m to aerial spraying during the pre-period. This enters interacted with 1;-2015,
a pre-post indicator that switches on in 2015 when aerial spraying was banned. As before,
ay and 7y are municipality and year fixed effects, respectively.

The coefficient of interest is 6, the impact of banning aerial spraying on crop health in
municipalities that were more exposed to glyphosate drift during Plan Colombia compared
to those that were less-exposed. Since these control municipalities were minimally exposed
in the first place, they have little to recover from and thus form the counterfactual agricul-
tural growth trend. 6 > 0 thus implies that agriculture in previously-exposed areas grew
faster post-ban, diverging from the counterfactual trend and signaling agricultural recovery.
Standard errors are clustered by plume.

Identification of 6 requires three assumptions: first, the treatment must be continuous,
which is the case since E;; is measured in hectare-equivalents. The second assumption is no
anticipation, meaning that farmers do not change their behavior before the ban. The third
assumption is parallel trends, which assumes that the evolution of agricultural outcomes
that municipalities with any exposure level, E;;, would have experienced without treatment
is the same as the evolution of outcomes that units in the untreated group actually experi-

enced. We test for parallel trends with an event study design next.

6.2 Dynamic Equation

To investigate the dynamic relationship between policy exposure and agricultural produc-

tion, as well as explore pre-existing agricultural trends in treated municipalities, we present
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Table 4: Difference in Differences Results

1) 2) 3) 4)
Area Output Revenue NDVI
Exposure;; x 1452015 0.023*** 0.022*** 0.004 0.001
(0.006) (0.008) (0.012) (0.000)
Coca + Climate Controls Yes Yes Yes Yes
Forest Cover No No No Yes
Municipality FEs v v v v
Year FEs v v v v
Observations 8976 8976 8976 8976

Tp <.1,*p <.05 ** p <.01. Data are at the municipality-year level. Exposure,, is pre-policy cumulative
exposure. 1y.p015 is a dummy that switches on in 2015. “Coca Controls” include distance to nearest sprayed
area and ha. of coca. “Climate Controls” include temperature and rain. Standard errors clustered by plume.

results from an event study version of the main equation:

Y= Y O0c(Em-7t)+ Y O0c(Em-ve) + X Q-+t + vt + €me 6)

TeTPre TeTpost

where all terms are the same as in Equation 5. Importantly, X],; includes distance from
m to the nearest sprayed area. The coefficients of interest are 6, where 6;—014 is omitted
so that coefficients are measured relative to the year before the policy. If farming activity
in treatment and control districts were on similar trends prior to the spraying ban, then 0
should be statistically indistinguishable from zero when T € 77"¢. When T € T, the 0;'s
identify the effect of the ban on agricultural outcomes in year 7.

6.3 Impacts of the Ban on Aerial Spraying
6.3.1 Limited Recovery of Agriculture

Estimates of Equation 5 are in Table 4. Column 1 is our preferred specification, where the
outcome is log harvested area. We find 6 > 0, implying that agricultural production in mu-
nicipalities previously exposed to glyphosate drift begin to rebound once aerial spraying is
banned. Point estimates suggest that the ban increased harvested area by about 2.3% over
the next four years. To contextualize this recovery, compare it with the estimated spraying-
induced damage prior to the ban (Table 2). The modest 2.3% rebound from this lower base-
line implies that only about 15% of the initial 13.2% loss (Table 2) in harvested area was
recovered during the four years following the ban.?? This suggests that most of the agricul-

22A 13.2% decline lowers harvested area to 0.868 of its original level. A 2.3% increase from this base yields
0.023 x 0.868 ~ 0.020, meaning that 0.020/0.132 = 0.15 (15%) of the initial loss is recovered.
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Figure 4: Event Study

Note: Purple circles are coefficients from Equation 6. The omitted period is 2014. Bars are 95% confidence
intervals. The regression includes municipality and year fixed effects as well as controls for distance to the
nearest sprayed area, coca area, temperature, and rainfall. Standard errors clustered by plume.

tural damage from aerial spraying persisted well after the spraying was discontinued.

Remaining columns explore sensitivity to alternative outcomes. Column 2 documents
robustness to using log crop output (tonnes). The magnitude of recovery is the same as
crop area. By contrast, we find no revenue response (column 3). Given higher output and
fixed prices, the attenuation of revenue may be explained by a post-ban shift toward lower-
value crops. Column 4 uses NDVI as the outcome and finds no effect. One explanation is
that, although we control for forest cover, residual variation may still capture other natural
vegetation which regenerates slower than managed agriculture.

Event study estimates are presented in Figure 4. Prior to the ban on aerial spraying,
exposed and non-exposed municipalities are on statistically similar trends and coefficient
estimates are near-zero. Once aerial spraying is banned in 2015, the coefficient turns sharply
positive and significant for the next four years. Overall, lack of pre-trends support the paral-
lel trends assumption. It also supports the no-anticipation assumption, which requires that

farmers do not alter their behavior prior to policy.

6.3.2 Robustness of Difference-in-Difference Estimates

Table A12 shows results from robustness tests designed to improve confidence in our difference-
in-difference estimates. The first test addresses overlap in the timing of the ban on aerial
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spraying and the FARC peace deal, a landmark accord that ended decades of armed conflict
and aimed to promote rural development in conflict-affected areas of Colombia. Economet-
rically, this policy overlap is only a concern if FARC conflict is correlated with wind drift.
Although it is hard to imagine why this would be the case, we control for FARC;; X 12015
in column 1, where FARC,;, is an indicator for whether municipality m was affected by con-
flict before 2015. The interaction coefficient is statistically indistinguishable from zero, while
the coefficient of interest, 6, remains positive, significant, and virtually unchanged in mag-
nitude. Our main estimate is thus uncontaminated by the peace deal timing.

Columns 2-4 test sensitivity to alternative specifications, data sources, and sample re-
strictions. Column 2 controls for aerial fumigation of legitimate crops such as rice and
bananas (see Section 5.3 for data details). Column 3 controls for five meteorology covari-
ates (Section 3.1.3) which partially determine treatment intensity and, potentially, the rate of
agricultural recovery. The coefficient remains virtually the same. Lastly, column 4 restricts
the sample to municipalities that were never sprayed during Plan Colombia, ensuring that
treatment variation is based only on exposure rather than any endogenous determinants of

spraying. The main coefficient remains stable.

6.3.3 What Happened to Damaged Cropland?

We have shown that (i) wind drift from glyphosate spraying damaged off-target cropland,
and (ii) minimal recovery of damaged cropland four years after spraying was banned. This
raises the question: what became of the damaged cropland that failed to recover? We inves-
tigate this by examining land use change in our difference-in-difference framework.

Table A13 reports estimates of 6 from Equation 5, where the outcome is the percent of
municipality m classified as grassland, shrubland, forest, or bare area in year t. Data are

from ESA land cover maps (Section 3.1.2).%3

We find a positive and statistically significant
effect for grassland (column 1) and shrubland (column 2), suggesting that municipalities
more exposed to glyphosate drift prior to the ban transitioned toward these land types. The
transition of previously-exposed cropland into grassland and shrubland is consistent with
either lasting damage to productivity, or land abandonment by farmers, though distinguish-

ing between these channels is beyond the scope of the present analysis.

7 Policy Simulation: Reinstatement of Aerial Spraying

In April 2025, Colombia announced plans to reinstate aerial fumigation (Tactics Institute,

2025). Our findings thus take on new urgency, not only revealing the scale of past spillovers

ZThere are 36 land classes provided. We subsume these into fewer categories using IPCC classifications.
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Table 5: Avoided Damages under Different Spraying Regimes

BAU Top 50 Top 25 Top 10
Revenue (USD Billions) 60.33556 60.94708 60.94775 60.94901
Avoided Damage (USD Millions) 0 611.5119 612.1846 613.4511

Note: Rows denote total harvest (TotY*) and avoided crop loss (Avoided Damage®) under each policy scenario.
Column 1 is business as usual. Column 2 only sprays areas with above-median coca area. Columns 3-4 target
hotspots where coca area is in the top 25th and 10th percentile. Values are means over 1000 bootstrap draws.

but also informing how future spraying campaigns might be designed to reduce collateral
damage. In this section, we use our retrospective estimates to simulate how alternative
targeting strategies could mitigate spillover crop damage.

Consider three targeting rules that spray coca hotspots only: (i) target coca areas above
the median of coca area distribution (“Top 50”), (ii) in the top quartile (“Top 25”), or (iii)
in the top decile (“Top 10”). Under each scenario, spray campaigns targeting smaller coca
plantations are dropped, and municipality exposure is recomputed according to Equation 2.
Then, for each municipality m and year t, we use our coefficient estimates from Equation 3 to

predict crop revenue in (constant) dollars, Y ;,

under scenario s € {Top 50, Top 25, Top 10}:
(ot = B+t + X Qo+ a7

where E; , denotes realizations of exposure to spraying under scenario s. These predic-
tions capture the partial-equilibrium effect of alternative coca targeting on spillover damage,
holding other factors constant. We then sum local predicted values, ant, across all munici-
palities and years to construct counterfactual measures of national crop revenue under sce-
nario s, denoted by TotY®. Comparing these totals to the in-sample aggregate fitted values
TotYBAU (business as usual) yields a simple metric of damage abated under each scenario:

DamageMitigation® = TotY® — TotY?4U  for s € {Top 50, Top 25, Top 10} (7)

To account for uncertainty in the predicted values, we bootstrap the prediction and ag-
gregation procedure with 1000 draws and report the mean. Table 5 reports mean aggre-
gate crop revenue and damage mitigation under each scenario. Restricting spraying to coca
plantations above the median size would have avoided $USD 611 million of spillover crop
damage relative to BAU. These savings amount to 3.7% of Colombia’s average agricultural
GDP during our study period (World Bank, 2026). Further restricting spraying to the largest
coca plantations (top decile) yields additional savings of roughly $USD 2 million.

Three mechanisms could drive damage mitigation under our proposed targeting rules.
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First, restricting spraying to large plantations reduces the total number of spray campaigns,
lowering overall herbicide release (extensive margin). Second, small coca plots may be
more likely to be embedded within mixed agricultural landscapes; excluding them therefore
would reduce drift onto nearby legal crops. Lastly, if legitimate crops near small coca plan-
tations are more vulnerable or more valuable, excluding these areas from spraying would
yield additional benefits. Although we cannot separately identify these channels, our esti-
mates quantify the total avoided damages implied by simple policy changes.

We acknowledge that reinstatement of aerial spraying has been announced but not yet
initiated at the time of writing, creating a narrow window to incorporate evidence-based
design into the upcoming policy. Our simulations suggest that, while aerial fumigation may

remain undesirable, smarter spatial targeting can mitigate its unintended consequences.

8 Conclusion

This paper shows that spatially targeted enforcement policies can generate large and per-
sistent externalities. Using aerial herbicide spraying to eradicate illicit crops in Colombia as
an empirical setting, we document that enforcement technologies operating locally but dis-
persing across space can impose large costs on non-targeted units. Moreover, we find that
the effects of these spillovers are not transitory and persist long after the intervention ends.

To quantify these effects we combine eradication data with a novel atmospheric dis-
persion model that simulates wind-driven glyphosate drift from sprayed coca fields. This
approach yields a plausibly exogenous measure of herbicide exposure across municipali-
ties. Our analysis reveals substantial negative spillovers: municipalities more exposed to
glyphosate drift experienced a 13.2% reduction in crop output during the period of active
spraying, with negative effects persisting for up to four years after exposure. In aggregate,
our estimates imply that agricultural growth in Colombia was held back by nearly half a
percentage point due to off-target crop losses.

A central feature of our findings is the persistence of off-target damages. We find little
evidence of short-run adaptation through credit uptake or GMO crop adoption. Moreover,
exploiting the 2015 ban on aerial spraying, our difference-in-differences analysis finds lit-
tle crop recovery in previously exposed areas. Instead, we document a transition of dam-
aged cropland into grassland and shrubland, indicating that enforcement-induced shocks
can lead to longer-run changes in land use rather than temporary production disruptions.
Taken together, we paint a picture of a place-based enforcement policy that inflicted collat-
eral damage that far outlasted the policy itself.

In April 2025, Colombia announced plans to reinstate aerial spraying. Our estimates of

off-target crop damage, along with prior evidence that spraying did not eradicate coca the
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tirst time around, implies that the policy should not be reinstated. However, if it is, our
policy simulations help guide a second-best approach that minimizes externalities. We esti-
mate that spraying only coca hotspots (plantations > median plot size) would have avoided
roughly $USD 611 million in crop loss from spillover damages, equivalent to 3.7% of Colom-
bia’s agricultural GDP.

The policy implications of our findings extend beyond Colombia. As governments world-
wide increasingly rely on spatially targeted interventions—whether to combat illicit activity,
manage land use, or enforce environmental regulation—our study highlights the impor-
tance of accounting for unintended spillovers. And when rollback is politically infeasible,
we show that better spatial targeting can reduce harm: even modest adjustments to the
“place” component of place-based policy design can avert substantial collateral damage.
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A Online Appendix

A.1 Appendix Tables

Table Al: Summary Statistics (2011-2015)

Obs. Mean Std. Dev.

A: Agriculture (2011-2018)

Planted Area (ha.) 8976 4548.61 6701.46

Harvested Area (ha.) 8976 3879.96 5745.71

Production (tons) 8976 44333.85 182055.90

NDVI 8976 0.69 0.08
B: Aerial Spraying (2011-2015)

Exposure (ha.) 5610 0.07 0.34

Sprayed Area (ha.) 5610 5639.88 30045.02
C: Covariates (2011-2018)

Km to nearest sprayed area 5610 107.94 83.36

Coca (=1) 8976 0.18 0.38

Coca Area (ha.) 8976 3314.38 14302.80

Rain (mm) 8976 9.17 6.45

Temperature (° C) 8976 19.87 5.16

Note: Summary statistics of main outcome variables (Panel A), explanatory variables (Panel B), and covariates
(Panel C). Aerial spraying data is available until 2015. All other data until 2018.
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Table A2: Placebo Estimates: Impact of Exposure to Non-sprayed Coca Plantations

1) ) 3) 4)
Area Output Revenue NDVI
Exposure (std. dev.) -0.044** -0.042** -0.046*** -0.005**
(0.019) (0.017) (0.013) (0.002)
Placebo Exposure (std. dev.) -0.007 -0.011 -0.008 -0.001
(0.008) (0.007) (0.006) (0.001)
Coca + Climate Controls Yes Yes Yes Yes
Forest Cover No No No Yes
Municipality FEs v v v v
Year FEs v v v v
Observations 5610 5610 5610 5610

fp <., p <05 ** p <.01. Data are at the municipality-year level. Outcomes are in logs. “Exposure”
to aerial spraying is measured in hectare-equivalents. “Placebo Exposure” is exposure to unsprayed coca plan-
tations. “Coca Controls” include distance to nearest sprayed area and hectares of coca. “Climate Controls”
include temperature and rainfall. Both explanatory variables are measured in standard deviations. All specifi-
cations include municipality and year fixed effects. Standard errors clustered at the plume level.

Table A3: Impacts on Ambient Pollution

(1) ) 3)
log(PM2.5) log(SO2) log(NO2)
Exposure (ha.) 0.003 0.009 0.004
(0.009) (0.008) (0.007)
Coca + Climate Controls Yes Yes Yes
Municipality FEs v v v
Year FEs v v v
Observations 5610 5610 5600

p <1, *p <.05 " p <01. Data are at the municipality-year level. “Exposure” to aerial spraying
measured in hectare-equivalents. “Coca Controls” include distance to nearest sprayed area and hectares of
coca. “Climate Controls” include temperature and rainfall. All specifications include municipality and year
fixed effects. Standard errors clustered at the plume level.
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Table A4: Robustness Checks — TWFE Estimates

1)

)

®)

(4) ©)

(6)

@)

Area Area Area Area Crop % Area Area

Exposure (ha.) -0.131**  -0.131**  -0.093*  -0.091***  -0.087***  -0.254"*  -0.341*

(0.057) (0.056) (0.050) (0.030) (0.028) (0.097) (0.174)
Controls Yes Yes Yes Yes Yes Yes Yes
Legal Spray Yes No No No No No No
Meteorology No Yes No No No No No
Municipality FEs v v v v v v v
Department x Year FEs v
Year FEs v v v v v v
Linear Trend No No No Yes No No No
Data Source EVA EVA EVA EVA ESA EVA EVA
Mask No No No No No 30km No
Sample Restricted No No No No No No Yes
Observations 5610 5610 5605 5610 5610 5610 4480

Note: Data are at the municipality-year level. “Exposure” to aerial spraying measured in hectare-equivalents.
The outcome in columns 1-4 and 7-8 are log harvested area. The outcome in column 5 is cropland percent.
Column 1 controls for legal crop spraying. Column 2 controls for energy flux, planetary boundary layer,
velocity, humidity, and surface roughness. Column 3 includes department-year fixed effects. Column 4 adds a
linear municipality trend. Column 5 uses alternative crop data from ESA. Column 6 adds a 30km mask around
the point source before calculating exposure. Column 7 drops sprayed municipalities from the sample. All
specifications control for distance to nearest sprayed area, ha. of coca, temperature, and rain. Standard errors
clustered by plume.

Table A5: Robustness of TWFE Estimates: Standard Errors

Standard Error Boundary Conley Spatial Error Cutoff

(1) (2) (3) (4) ()

Plume Municipality 200km 300km 500km
Exposure (ha.) -0.132** -0.132** -0.132%** -0.132** -0.132%**

(0.057) (0.059) (0.048) (0.058) (0.051)
Controls Yes Yes Yes Yes Yes
Municipality FEs v v v v v
Year FEs v v v v v
Clustering Plume (30) Municipality Conley Conley Conley
Observations 5610 5610 5610 5610 5610

p <., " p <.05 * p <01l Data are at the municipality-year level. Coefficient estimates and standard
errors are from baseline equation (Equation 3) with alternative error clustering. Column 1 clusters at the plume
level with 30 demarcated plumes. Column 2 clusters at the municipality level. Columns 3-6 implement Conley
(1999) standard errors for four different values of the kernel cut off distance (in km)
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Table A6: Heterogeneity by Crop Diversity

(1) 2) ©) (4)
Area Output Revenue NDVI
Exposure (ha.) -0.234 -0.246 -0.215 0.013
(0.255) (0.222) (0.177) (0.016)
Exposure (ha.) x Shannon Index 0.049 0.058 0.037 -0.013
(0.135) (0.120) (0.089) (0.008)
Coca + Climate Controls Yes Yes Yes Yes
Forest Cover No No No Yes
Municipality FEs v v v v
Year FEs v v v v
Observations 5610 5610 5610 5610

p <.l p <.05 " p <01. Data are at the municipality-year level. “Exposure” to aerial spraying is
measured in hectare-equivalents. “Coca Controls” include distance to nearest sprayed area and hectares of
coca. “Climate Controls” include temperature, and rainfall. All specifications include municipality and year
fixed effects. Standard errors clustered at the plume level.

Table A7: Heterogeneity by Crop Diversity (Species Richness)

o) 2) 3) (4)
Area Output Revenue NDVI
Exposure (ha.) -0.260 -0.224 -0.262** 0.006
(0.155) (0.144) (0.103) (0.012)
Exposure (ha.) x Number of Crops 0.013 0.010 0.013 -0.002
(0.018) (0.018) (0.011) (0.001)
Coca + Climate Controls Yes Yes Yes Yes
Forest Cover No No No Yes
Municipality FEs v v v v
Year FEs v v v v
Observations 5610 5610 5610 5610

*p <. " p <.05 " p <01 Data are at the municipality-year level. “Exposure” to aerial spraying
measured in hectare-equivalents. “Coca Controls” include distance to nearest sprayed area and hectares of
coca. “Climate Controls” include temperature, and rainfall. All specifications include municipality and year
fixed effects. Standard errors clustered at the plume level.
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Table A8: Impacts of Exposure on Annual Crops

1) @ ®) *) ©) ©) @) ®) )

All Oilseeds Fibers Cereals Flower Veggies Legumes Spices Other
Exposure (ha.) -0.150 -0.281** -0.023* -0.085 0.001 0.004 -0.161 0.025 -0.016™**
(0.110) (0.129) (0.012) (0.099) (0.005) (0.058) (0.177) (0.019) (0.005)
Coca + Climate Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
Municipality FEs v v v v v v v v v
Year FEs v v v v v v v v v
Observations 5478 5478 5478 5478 5478 5478 5478 5478 5478

*p <. " p <.05 * p <01. Data are at the municipality-year level. “Exposure” to aerial spraying
measured in hectare-equivalents. “Coca Controls” include distance to nearest sprayed area and hectares of
coca. “Climate Controls” include temperature, and rainfall. All specifications include municipality and year
fixed effects. Standard errors clustered at the plume level.

Table A9: Impacts of Exposure on Perennial Crops

Annual Crops

(1) 2) 3) 4) 5)
All Fruits Plantains Tree Crops Other
Exposure (ha.) -0.058 0.037 -0.078** -0.297* -0.116
(0.041) (0.083) (0.034) (0.158) (0.082)
Coca + Climate Controls Yes Yes Yes Yes Yes
Municipality FEs v v v v v
Year FEs v v v v v
Observations 5478 5478 5478 5478 5478

*p <. " p <.05 " p <01 Data are at the municipality-year level. “Exposure” to aerial spraying
measured in hectare-equivalents. “Coca Controls” include distance to nearest sprayed area and hectares of
coca. “Climate Controls” include temperature, and rainfall. All specifications include municipality and year
fixed effects. Standard errors clustered at the plume level.

Table A10: Adaptation: Farm Credit

(1) ) ©) (4)
All Farms  Small Farms  Medium Farms  Large Farms
Exposure (ha.) 0.315* -0.164 0.058 -0.088
(0.165) (0.115) (0.070) (0.143)
Coca + Climate Controls Yes Yes Yes Yes
Municipality FEs v v v v
Year FEs v v v v
Observations 5610 5610 5610 5610

fp <1, p<.05 " p <01 Data are at the municipality-year level. Outcome is log(farm credit + 1) for
different farm operations. “Exposure” to aerial spraying measured in hectare-equivalents. “Coca Controls”
include distance to nearest sprayed area and ha. of coca. “Climate Controls” include temperature, and rain.
All specifications include municipality and year fixed effects. Standard errors clustered at the plume level.
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Table A11: Adaptation: GMO Crop Adoption

(1) 2)
GMO Cotton GMO Maize
Exposure (ha.) -0.107 -0.447
(0.076) (0.264)
Coca + Climate Controls Yes Yes
Department FEs v ve
Year FEs v v
Observations 125 125

p <1 *p <.05 " p <01l Data are at the department-year level. The outcome is share of harvested
area planted with GMO cotton or maize. “Exposure” to aerial spraying is measured in hectare-equivalents.
“Coca Controls” include distance to nearest sprayed area (department-year mean) and ha. of coca (department-
year total). “Climate Controls” include temperature, and rain (department means). All specifications include

department and year fixed effects. Standard errors clustered at the department level.

Table A12: Robustness: Difference-in-Difference Estimates

1 2) (©) (4)
Area Area Area Area
Exposure;; x 1¢~2015 0.021*** 0.022*** 0.021*** 0.223***
(0.007) (0.006) (0.006) (0.042)
FARCm X ]lt>2015 0.026
(0.058)
Controls Yes Yes Yes Yes
Legal Spray No Yes No No
Meteorology No No Yes No
Municipality FEs v v v v
Year FEs v v v v
Data Source EVA EVA EVA EVA
Sample Restricted No No No Yes
Observations 8976 8976 8976 7258

*p<.1,* p <.05 ** p <.01. Note: Data are at the municipality-year level. Exposurey, is the pre-policy total
exposure of municipality m. 1;57015 is a dummy that switches on in 2015. FARC,, is a dummy for whether
m experienced FARC-related conflict in the pre-period. Column 2 controls for legal crop spraying. Column 3
controls for energy flux, planetary boundary layer, velocity, humidity, and surface roughness. Column 4 drops
sprayed municipalities from the sample. All specifications control for distance to nearest sprayed area, ha. of

coca, temperature, and rain. Errors clustered by plume.
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Table A13: Difference in Differences Results: Land Use Transitions

(1) () 3) 4)
Grassland Shrubland Forest Bare
Exposure;; x 1¢~2015 0.003** 0.006* -0.016 -0.000
(0.001) (0.003) (0.011) (0.000)
Coca + Climate Controls Yes Yes Yes Yes
Municipality FEs v v v v
Year FEs v v v v
Observations 8976 8976 8976 8976

*p<.1,* p <.05 " p <.01. Data are at the municipality-year level. Outcomes are the percent of land under
each land use type. Exposurey, is the pre-policy total exposure of municipality m. 1;52015 is a time dummy that
switches on in 2015. “Coca Controls” include distance to nearest sprayed area and hectares of coca. “Climate
Controls” include temperature and rainfall. Standard errors clustered by plume.
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A.2 Appendix Figures

Pre-policy Exposure (ha.)
B
0 5 10 15 20

Figure Al: Treatment Distribution: Pre-policy Exposure
Note: Treatment is cumulative exposure during the pre-policy period.

B Robustness to Continuous-Treatment DiD Concerns

Table A14 shows estimates after we discretize exposure into high and low intensity regimes
to assess whether our results could be driven by comparisons across different exposure in-
tensities, as cautioned by Callaway et al. (2024). This approach restricts identification to ex-
posed—versus—unexposed comparisons and avoids reliance on comparisons across positive
exposure levels. Column 1 compares municipalities experiencing high exposure to never-
exposed municipalities, while Column 2 compares low exposure to never-exposed munici-
palities. The estimates are qualitatively consistent with our baseline results, supporting the
interpretation that our findings are not driven by problematic weighting across different
exposure intensities.
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Table A14: High- and Low-Exposure Effects Relative to Zero Exposure

1) ()
High vs 0 Low vs 0
High Exposure -0.141
(0.091)
Low Exposure -0.038**
(0.017)
Coca Controls Yes Yes
Climate Controls Yes Yes
Municipality FEs v v
Year FEs v v
Observations 3682 3689

Note: High and low exposure regimes are defined based on discretized values of the exposure measure. Never-
exposed municipalities are defined as municipality—year observations with zero wind-driven exposure. All
specifications include plume and year fixed effects, coca-related controls, and climate controls. Standard errors

are clustered at the municipality level.
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