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Abstract
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1 Introduction

Nearly 80% of the rural poor are involved in agriculture, and 50% are smallholder farmers

(The World Bank, 2007). While smallholder agriculture can transform rural livelihoods,

boost local economies, and improve food security, land scarcity often necessitates conver-

sion of natural landscapes for agriculture. Over the past two decades, agriculture was

responsible for 90% of global deforestation (FAO, 2020).

The goal of this paper is to quantify the economic benefits and ecological costs of

smallholder agriculture in developing countries. An extensive literature by economists,

ecologists, and practitioners studies solutions for balancing this development-environment

tradeoff, including improving agricultural productivity (Abman et al., 2024; Caunedo and

Kala, 2021; Assunção et al., 2017), market access (Abman and Lundberg, 2024; Bellemare

and Barrett, 2006), and payments for ecosystem services (Jayachandran et al., 2017; Alix-

Garcia et al., 2015). Yet, few have quantified the size of the tradeoff in the first place.

We address this gap by estimating the development-environment tradeoff in the con-

text of cashew tree crops in Benin, West Africa. Our objective is to quantify income effects

of expanding cashew cultivation as well as forest loss for each unit of expansion. We

achieve this objective by developing the first high-resolution cashew maps for Benin us-

ing remote sensing, deep learning, and validation data from the field. We pair this novel

data with a shift-share instrument for cashew cultivation based on fluctuations in global

cashew price volatility. Benchmarking the development-environment tradeoff from agri-

culture is important for helping developing country governments understand the ecolog-

ical effects of structural transformation and agricultural modernization.

The cashew sector in Benin offers an ideal study setting since cashews are a high-value

crop, provide stable incomes, and are grown widely by smallholders across West Africa.

Moreover, Benin is a top-10 global cashew producer, the third largest in West Africa, and

has invested heavily in the sector over the past decade (Lin et al., 2021; Yin et al., 2023;

Duguma et al., 2021). This smallholder-led growth allows us to examine how agricultural
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expansion impacts rural incomes and forest loss. While cashew production can increase

by forestland conversion (extensive margin) or technology adoption on existing farmland

(intensive margin), we focus primarily on the former.

To measure cashew cultivation over time, we built a remotely-sensed data product

using image classification, deep learning, and field visits to classify cashew trees at 3m

resolution for the years 2015, 2019, 2020, and 2021. Our novel gridded data product is the

first of its kind and fills a key gap: most studies of tree crops focus on rubber and oil palm,

which are grown on large commercial farms and can be detected by low-resolution satel-

lites (Putra and Wijayanto, 2023), whereas cashew trees grow on small fields, preventing

classification by satellites. Our image classification algorithm overcomes this issue, en-

abling one of the first studies of cashew farming in the applied economics literature1.

To measure local incomes, we use the new (released February 2025) annual gridded

GDP product by Rossi-Hansberg and Zhang (2025) (hereafter, RHZ), which provides

modeled GDP estimates at 0.25◦ resolution globally. These are the most precise subna-

tional GDP estimates available and we are among the first to pilot its use. Yet at 25◦,

roughly the size of Chicago, income changes at lower levels go undetected. To capture

household-level effects, we pair the panel data with the 2018 Demographic and Health

Survey (DHS), which surveys 3000 households in our study area.

Lastly, we measure time-varying forest cover using 200m resolution satellite data. To

address concerns that cashew trees may be misclassified as forest, we conduct a validation

exercise which shows that over 90% of cashew pixels are not classified as forest. This

means that cashew encroachment into forest will be registered as a decrease in forest

cover, without contamination from misclassifying cashew trees as afforestation.

The main econometric challenge in estimating the impact of cashew cultivation on

incomes and forests is reverse causality: higher incomes may enable cashew expansion,

and degraded forestland may be more likely to be converted to cashew plantations. We

1We wish to clarify that the development of our data product is the contribution of our companion paper
(Yin et al., 2023), not this one. In this paper, we are simply consumers of our own gridded data product.
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address this with a shift-share instrument, motivated by the idea that specialized and non-

specialized farmers respond differently to price uncertainty. The “shift” consists of global

cashew price volatility and the “share” is baseline cashew land share. This setup isolates

local variation in land allocated to cashews generated by heterogeneous farmer responses

to global price uncertainty. We support the exclusion restriction by controlling for the

corresponding price level shift-share—in case price volatility and level are correlated—

since high cashew prices can raise incomes of cashew sellers without affecting land use.

Our analysis uncovers an interesting and somewhat puzzling pattern: cashew culti-

vation in Benin sharply degrades forests without generating meaningful income gains, at

least none observable in the satellite GDP data. A 10 percentage point (pp.) increase in

land share under cashews causes a 2.7 pp. decline in forest cover. The same expansion of

cashew farming increases local GDP per capita by 4.5%, though the estimate is imprecise.

Sharp forest loss and weak income gains also appear under a variety of alternative price

volatility instruments, with different fixed effects and time trends, and with alternative

data sources. Dynamic estimates of the tradeoff also show that forest loss from cashew

expansion is lasting, whereas economic benefits are not detected even after several years.

The remainder of the paper investigates mechanisms. Why do farmers grow cashews

despite their apparent unprofitability? We find support for two explanations: (i) cashew

farming is profitable, but income gains are highly concentrated and thus obscured in

coarse GDP data; and (ii) farmers pursue second-order benefits—reduced income volatility—

not first-order income gains. To test the first explanation, we use DHS household data

and find that landowning households near cashew plantations are significantly wealthier

than those farther away. Though cross-sectional, this points to income gains from cashew

cultivation within households that may be missed in coarse GDP measures. We then turn

to higher-resolution panel GDP data (0.1◦) from Chen et al. (2022). Though only for two

years and unsuitable for shift-share analysis due to insufficient variation, corresponding

TWFE estimates reveal strong income gains. Lastly, to deploy our 2SLS strategy, we use
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the shift-share on a restricted RHZ sample of areas where cashews are widespread within

GDP pixels and, once again, find significant income gains. These exercises suggest that

muted effects in the main analysis reflect localized gains blurred in coarse GDP data.

To test the second explanation—that the absence of first order income benefits is be-

cause farmers are interested in second order benefits (reduced income volatility)—we use

annualized volatility of monthly nightlights an outcome in the shift-share analysis. Un-

like annual crops, this view envisions perennial cashew trees as capital assets: requiring

initial investments but yielding returns over time that smooth income in uncertain en-

vironments. We find that cashew cultivation reduces income volatility across four mea-

sures of volatility, though only one measure is statistically significant. While this tempers

strong conclusions, our estimates suggest that farmers prioritize income stability over

immediate gains, helping explain muted income effects in our main analysis.

The paper concludes by incorporating our estimates into a cost-benefit analysis. We

use the social cost of carbon to convert forest loss into dollars. A 10 pp. expansion in land

share under cashews costs $USD 2 billion in terms of forest loss and generates between

$USD 111-144 million in income gains depending on if we use our qualitatively positive

or statistically precise GDP estimates. For every dollar earned from cashew cultivation,

the ecological cost is between 14-18 times more. This represents a lower bound since the

value of many forest ecosystem services are excluded from the cost calculation.

Literature Contributions This paper adds to a seminal literature on tradeoffs between

economic development and environmental quality (Grossman and Krueger, 1995; Das-

gupta et al., 2002; Stern et al., 1996; Foster and Rosenzweig, 2003; Jayachandran, 2022).

Much of this work confronts the controversial Environmental Kuznets Curve in theory or

with national data. Instead, we study the development-environment tradeoff within one

country with highly disaggregated data, which enables a characterization of the tradeoff

for individual villages and even households.
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We also join a broader literature on structural transformation and agricultural devel-

opment (Bustos et al., 2016; Emerick, 2018; Moscona, 2019; Madhok et al., 2024). This

work largely studies how agricultural development affect affects on- and off-farm labor

at coarser geographic scales, whereas we focus on estimating income benefits from ex-

panded household cultivation within small administrative units.

Lastly, we extend a new literature on agriculture and deforestation (Abman and Lund-

berg, 2024; Abman et al., 2024; Brewer et al., 2024; Green et al., 2005). This work mainly

focuses on the intensive margin, showing that improvements in agricultural productivity

can spare nature. In contrast, we focus on the extensive margin and show that expanded

cultivation displaces forests. An exception is Brewer et al. (2024), who show that agri-

cultural labor loss leads to farm size contraction and, separately, that labor loss reduces

deforestation. We extend this by directly connecting agricultural expansion to forest loss.

The paper proceeds as follows. The next section provides background on the economy

and environment in Benin. Section 3 summarizes how we built gridded cashew maps

and describes other data. Section 4 distills three stylized facts from the data and Section 5

outlines our instrumental variable strategy. Section 6 presents the main results. Section 7

investigates mechanisms and Section 8 concludes.

2 Background

Benin lies on the West African coast, bordered by Togo to the west and Nigeria to the east.

The administrative structure features 12 departments, divided into 77 communes and 546

arrondissements. Arrondissements comprise several villages and form the main admin-

istrative unit for local governance. While we present some correlations and mechanisms

at the household level (Section 4), most of our analysis is at the arrondissement level.

Agriculture is the backbone of Benin’s economy, accounting for 30% of GDP and sup-

porting the livelihoods of 70% of the population. Cashews are among the main cash crops,
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Figure 1: Study Area, Cashew Distribution, and Forest Cover
Note: Panel A shows the study area. Panel B shows the distribution of cashew plantations in the study area
at 3m resolution. Panel C plots 2015 forest cover at 200m resolution. Cell values denote % forest cover.

in part due to the tropical savanna climate. Nearly 200,000 smallholders contribute to the

industry, which generates about 15% of export revenue (Yin et al., 2023). Farmers first

sell raw kernels to cooperatives or directly to intermediaries who, in turn, package, store,

and sell to industrial processors. These processors handle shelling, roasting, grading, and

preparation of the nuts for export (Tandjiékpon, 2010)2. Note that our results are not par-

ticular to this market structure, as the same supply chain is followed in other major West

African cashew-producing countries (Mighty Earth, 2023).

Cashew cultivation is mainly practiced in Central Benin. Our study area was chosen to

encompass the main cashew-growing communes, including all 6 communes in Collines

department and 7 others across the departments of Donga, Borgou, and Zou (Figure 1A).

The 13 communes in our study area comprises 103 arrondissements, collectively home

to 25% of Benin’s population. Figure 1B maps all cashew plantations within our study

area (Section 3.1 for data details). Although plantations are spread across Central Benin,

production is concentrated near the eastern and western borders.

2Over 95% of Benin cashews are exported (Tandjiékpon, 2010). Although our analysis focuses on the
first step of the supply chain, much before export, an emerging economics literature studies links between
agriculture, international trade, and deforestation (Carreira et al., 2024; Farrokhi et al., 2023; Hsiao, 2021).
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In 2015, the first year of our study period, Benin implemented the BeninCaju program,

an initiative to stimulate the cashew sector. The program offered subsidized seeds, farmer

training, and subsidized credit (USDA and TechnoServe, 2015). Importantly, the program

lasted throughout our full study period and was available to all farmers in our study

region. Because of its ubiquitous coverage and lack of targeting, we do not expect the

program to confound our research design. We discuss such threats to identification in

more detail in Section 5.1.2.

Cashew agroforestry threatens local ecology since agriculture and forests compete for

land. Nearly 11,000 ha. of forest was lost in Benin during our study period, approximately

7% of the total forest area in 2000 (Global Forest Watch, 2024), with agriculture cited as

the main driver (World Bank, 2020). This tension can also be observed locally: Figure 1C

shows that cashew plantations are situated in regions with high forest cover.

Economic theory states that, as cashew production becomes more lucrative, farmers

may intensify farming on existing land (intensive margin), or expand farming by convert-

ing adjacent forestland for agriculture (extensive margin). The impact of cashew expan-

sion on forest cover is therefore an empirical question. We focus on the extensive margin

since we lack data on farm labor and capital investment. In any case, we expect the exten-

sive margin response to dominate in our context since farmers are typically factor market

constrained in developing countries (Conning and Udry, 2007).

3 Data

We developed the first high-resolution cashew maps for Benin using remote sensing, deep

learning, and validation data from the field. We complement this with newly released

gridded GDP data. Forest cover is also measured with satellite data. The final panel is

unbalanced and spans 2015, 2019, 2020, and 2021.
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Figure 2: Cashew Image Classification Pipeline
Note: Overview of data processing pipeline along with the methods employed and the maps generated.
Detailed technical description provided in our companion paper (Yin et al., 2023).

3.1 Building A Novel Geo-coded Dataset on Cashew Cultivation

Most studies of tree crops have been restricted to commercial crops on large farms (palm

oil, rubber) since these can be mapped by low-resolution satellites (Putra and Wijayanto,

2023). In contrast, cashews have small crowns (<5m) and are grown on small fields,

leading to a dearth of satellite data on their distribution and, therefore, a knowledge gap

about their environmental and economic impacts.

We overcome this data gap by developing the first remotely-sensed cashew maps in

Benin for the years 2015, 2019, 2020, and 2021 using cutting-edge image classification

techniques paired with field data for ground-truthing. Our algorithmic design details

and final data product are the contribution of our companion paper (Yin et al., 2023). In
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Figure 3: Spatial distribution of cashew coverage (%)
Note: Borders delineate arrondissements in the study area. Shading represents the percentage of grid cells
in an arrondissement with cashew crops, as classified by the model.

the present paper, we are simply consumers of our own data. To avoid repeating details,

we illustrate our data construction procedure in Figure 2 and summarize key steps below.

To build our own gridded cashew data product, we begin by downloading Planet

Basemaps for 2019-2021, which provide high-resolution (3 meter) images of Earth. Base

data for 2015 are from a Benin government aerial imaging exercise, as Basemaps is un-

available before 2019. Next, we trained a neural network model on validation labels

drawn from site visits carried out by our local partner, TechnoServe, to “learn” whether

pixels have cashew trees or not. Lastly, we applied the trained model to the Basemaps

data for our study area to generate the final gridded cashew data product. To assess ac-

curacy, field teams recorded land cover types in 1,400 validation sites. About 85% were

correctly classified by our model, representing top-tier performance for smallholder tree

crop classifications. Figure B1 shows classification output for four example cashew plan-

tations. More technical details can be found in our companion paper (Yin et al., 2023).

For the analysis, we aggregate to the fraction of grid cells in an arrondissement grow-

ing cashews. This preserves the smallholder nature of cashew farming while aligning
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with the coarser resolution of GDP pixels (Section 3.3)3. Figure 3 plots cashew cultivation

at the arrondissement level across the study period: an increase in the density of cashew

plots is observed as green areas become darker over time. We also observe arrondisse-

ments with no cashews in 2015 come under cultivation in later periods (southeast region).

Our mapping procedure is designed to scale across time and space. It can be easily

extended past 2019, when Planet Basemaps are available, and before that if local imaging

products are available. The procedure can also be applied in other regions that grow

cashews, such as West Africa, South Asia, and Southeast Asia. The main caveat is that

training labels must be available from field visits or from another source.

Cashew Prices We obtain country-month level cashew prices from FAOSTAT to build a

global price volatility instrument for local cashew production (Section 5). Country-year

data on cashew production (tonnes) are also obtained from FAOSTAT and used as weights

in the aggregation from country to global level. In a robustness check, we use alternative

prices from the International Nut and Dried Food Council (INDFC, 2023)4

3.2 Cross-Sectional Household Data

While the majority of our analysis uses satellite data, we establish stylized facts (Section 4)

and study mechanisms (Section 7.1) using household data from the 2018 DHS survey.

The survey is nationally representative and covers 14,156 households, of which 20% are

in our study area. Household wealth is measured on a scale from 1 (poor) to 5 (rich).

We measure household “exposure” to cashew cultivation by the euclidean distance from

the centroid of their sampling cluster to the nearest plantation5. To estimate associations

3Moreover, In high-resolution (1-30m) crop mapping, small fields can result in mixed pixels that contain
multiple land cover types, leading to classification errors. When data from these pixels are aggregated
over larger areas, mixed pixel errors tend to average out, resulting in more accurate crop area estimates
(Ozdogan and Woodcock, 2006; Husak et al., 2008).

4Yearly prices are computed by dividing global supply value ($USD billions) by production volume
(metric tons) reported by INDFC. We convert to 2015 prices to account for inflation.

5For computational simplicity, we aggregating the 3m cashew tree rasters to 200m “plantations”.
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between cashew cultivation and forest cover, we use the Enhanced Vegetation Index (EVI)

reported by DHS for each survey cluster. EVI, which is a commonly used measure of

forest cover, is reported as an average within a 2km and 10km radius for rural and urban

survey clusters, respectively. At these small scales, a negative correlation between cashew

cultivation and EVI more likely indicates localized forest clearing for agriculture.

3.3 Time-Varying Satellite Data

Gridded GDP Measuring local agricultural development over time requires a dynamic

wealth measure at high resolution. We use new (released February 2025) gridded GDP

data developed by RHZ (Rossi-Hansberg and Zhang, 2025), which predicts GDP per

capita at 0.25◦ resolution using a random forest model trained on subnational GDP shares

and other predictors like nightlights, population, and CO2 emissions. Final predictions

are rescaled to match national or state GDP totals. For robustness, we also use nightlight

intensity, which is a strong proxy for local GDP (Henderson et al., 2012).

Despite enabling measurement of local income in developing countries, gridded GDP

suffers at least two shortcomings. The first is conceptual: GDP is an inherently aggre-

gate object, reflecting gross value added from all production or consumption activities

in an area. RHZ assume we can measure the contribution of a handful of individuals

to total GDP based on how their economic production is picked up by nightlights and

other proxies. The second issue is econometric: luminosity values feature non-classical

measurement error since the satellite has difficulty detecting lights at low levels. This can

attenuate GDP in rural areas where cash injections from cashew farming may go unde-

tected from outer space. We partially address this with our instrumental variable (IV)

design, as orthogonality between the IV and luminosity error allow us to circumvent is-

sues of non-classical error in our 2SLS estimates.
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Forest Cover Forest cover is from the Vegetation Continuous Fields (VCF) product (Town-

shend et al., 2017), which measures percent forest cover at 200m resolution. Our main out-

come is forestland share, which is the weighted sum of pixel values in each arrondissement-

year, with weights equal to pixel area, divided by arrondissement land area.

The main alternative to VCF is Hansen et al. (2013), which measures forest loss/gain

at 30m. We do not use this data because its definition of forest includes “plantations in

sub-tropical and tropical ecozones.”6. This means that replacing natural forest with agro-

forestry is (mis)recorded as zero forest change, leading to severely attenuated estimates

of forest loss from cashew cultivation7. VCF avoids this pitfall: as we show in Section 4.1,

the percent forest cover values in VCF exclude cashew trees 90-99% of the time.

Covariates We include two sets of covariates in the TWFE and 2SLS analyses: weather

and agricultural input use. Weather includes temperature, rain, and drought intensity,

which control for climatic factors that co-determine agricultural productivity and eco-

nomic output. Gridded annual temperature (◦C) and rainfall (mm) are from the ERA5

product at 0.125◦ resolution (Hoffmann et al., 2019). Drought intensity is from the grid-

ded (0.5◦ resolution) Standardized Precipitation Evapotranspiration Index (SPEI), which

measures the difference between potential evapotranspiration and precipitation.

Agricultural input use is measured in kg/ha using the PEST-CHEMGRIDS data prod-

uct at 0.1◦ resolution (Maggi et al., 2019). This variable help partial out intensive margin

responses and allows us to isolate the impact of cashew production through extensive

margin changes in land under cashews. Our measure of input use is the mean applica-

tion rate of the 20 most common active chemical ingredients applied to fruit crops, which

includes the cashew apple8. For both weather and agrochemical covariates, we extract

the mean over cells within arrondissements for each year.

6Quote from https://data.globalforestwatch.org/documents/gfw::tree-cover-loss/explore.
7This misclassification also arises in Dynamic World (Brown et al., 2022), an alternative forest dataset.
8PEST-CHEMGRIDS is for 2015, 2020, and 2025. We linearly interpolate values for 2019 and 2021.
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Table 1: Summary Statistics
Observations Mean Std. Dev.

Panel A: DHS (2018)
Dist. to Nearest Plantation (km) 2866 4.26 11.17
Wealth Index (scale 1-5) 2866 3.00 1.28

Panel B: Panel (2015-2021)
Cashew Tree Coverage (%) 412 0.13 0.15
Cashew Density (per km2) 412 7.04 4.57
GDP Per Capita (USD) 412 1172.44 1546.18
Forest (share of land area) 412 0.07 0.03
Agrochemicals (kg/ha) 412 0.41 0.04

Note: Panel A summarizes household variables from the 2018 DHS survey. Panel B summarizes the panel
data at the arrondissement-year level. “Cashew plantation coverage” is the fraction of 200m grid cells in an
arrondisseemnt with cashews. “Cashew tree coverage” is computed in the same way using 3m grid cells.

3.4 Summary Statistics

Table 1 summarizes the main outcome and explanatory variables in the DHS (Panel A)

and gridded panel dataset (Panel B). In Panel A, “Observations” is the number of house-

holds surveyed in the study region where cashew trees were mapped. The typical house-

hold lives about 4km from the nearest cashew plantation. The standard deviation is

nearly three times the mean, indicating substantial variation in cashew exposure across

space. The average household has a wealth score of 3 out of 5. In Panel B, data are at the

arrondissement-year level. The typical arrondissement cultivates cashew trees on 13% of

its land area over the study period. Cultivation is relatively intense: there are 7 planta-

tions per km2. In terms of wealth, GDP per capita is about $USD 1,170, which matches

official national statistics. Lastly, the typical arrondissement has about 7% forest cover.

4 Three Stylized Facts

Having described the data, we next present three stylized facts about agriculture and

deforestation in Benin. The first fact verifies that cashew trees are not misclassified as

forests. The second and third establish correlations between cashew cultivation, wealth,
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and forest cover. These insights motivate our empirical strategy in Section 5.

4.1 Fact I: Cashew trees are not classified as forests

Figure 4: Validation of VCF Forest Cover Data
Note: Panels A, B, and C define forest (light green) as pixels with forest cover above 15%, 20% and 25%,
respectively. Dark green polygons are new cashew plantations between 2020 and 2021 that are (correctly)
not classified as forest by VCF. Yellow polygons are new plantations that are (incorrectly) classified as forest.

The first fact is that new cashew plantations are not measured as afforestation by our

forest cover data. If they were, then the impact of cashew cultivation on forest cover

would be attenuated since declines in forest cover from agroforestry encroachment would

be offset by misclassifying new plantations as forest gain.

To establish this fact, we first define VCF pixels with forest cover > 15% as forest.

Second, we overlay our cashew maps in year t on year t − 1 and define non-overlapping

polygons as new plantations or plantation expansions in year t. Third, we overlay these

on year t forest pixels based on the 15% threshold. If any cashew expansions fall inside

forest pixels, then the corresponding percent forest cover value from VCF includes both

natural forests and cashew trees, which threatens our research design.

Figure 4 visualizes our procedure. For transparency, we show a part of the study

area where some cashew plantations are correctly not classified as forest (dark green),
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Table 2: Correlation: Cashew Proximity, Household Wealth, and Forest Cover

(1) (2)
Wealth Index Log EVI

Near cashew (=1) 0.343∗∗ -0.022∗∗∗

(0.145) (0.002)

Household Controls Yes Yes

Geography Controls Yes Yes

Outcome Mean 3.004 8.118
Arrondissement FEs ✓ ✓
Observations 2866 2866
R2 0.512 0.985

Note: ∗ p < .1, ∗∗ p < .05, ∗∗∗ p <.01. Data are a household cross section. Column 1 is household wealth
on a scale of 1-5. Column 2 is log of EVI in a small radius around each household (2km radius for rural
and 10km for urban). “Near Cashew” indicates whether households’ DHS cluster is less than the median
distance to the nearest cashew plantation. Regressions include survey weights and controls for household
size, language, rain, temperature, lat/lon, and nightlights. Standard errors are heteroskedasticity-robust.

and where some plantations are incorrectly classified as forest (yellow). The VCF forest

cover percentage in light green pixels with yellow polygons will therefore mistakenly

include cashew trees. Yet when characterizing misclassification in the full study area,

90% of cashew plantations are not classified as forest by VCF (Table A1)9. This implies

that cashew encroachment into forests will be measured as a decrease in forest cover by

VCF data, without contamination from misclassifying cashew trees as afforestation.

4.2 Fact II: Cashews, wealth, and forests are correlated across space

The second fact is that households near cashew plantations are wealthier, yet are sur-

rounded by more degraded forests. We establish this using DHS data by estimating:

Yiad = δ · NearCashewiad + ΓX′
iad + αa + ϵiad (1)

999% of VCF pixels do not include cashew trees using a 25% threshold for what constitutes a forest.
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Table 3: TWFE: Cashew Coverage, Local Income, and Forest Cover

(1) (2) (3)
Log NTL Log GDP Forest Share

Cashew Share 0.376∗∗ 0.062 -0.031∗∗∗

(0.172) (0.077) (0.011)

Controls Yes Yes Yes

Data Source ✓ ✓ ✓
Arrondissement FEs ✓ ✓ ✓
Department × Year FEs 412 412 412
Observations 0.977 0.857 0.882

Note: ∗ p < .1, ∗∗ p < .05, ∗∗∗ p <.01. Data are at the arrondissement-year level. Outcomes are transformed
by log(x + 0.01) to account for zero values. Column 1 is nightlight radiance, column 2 is GDP per capita
from Rossi-Hansberg and Zhang (2025), and column 3 is forest share of land area. “Cashew share” is the
fraction of arrondissement land area under cashews. All specifications control for rain, temperature, and
drought intensity. Standard errors clustered by arrondissement.

where i, a, and d index households, arrondissements, and departments, respectively, and

Yiad is wealth or forest quality. NearCashewiad equals one if household i lives less than the

median distance to the nearest cashew plantation, and zero otherwise. X′
iad is a vector of

geography and household covariates10. The arrondissement fixed effect, αa, absorbs time-

invariant differences across arrondissements, leaving δ to be estimated off of comparisons

across households within the same arrondissement.

Household exposure to cashew cultivation is positively correlated with wealth (Ta-

ble 2). Living near a plantation is associated with 11% (=0.343/3.004) higher wealth (col-

umn 1). However, these “cashew-exposed” households also experience more environ-

mental degradation, with 2.2% less surrounding forest cover compared to non-exposed

households (column 2). Of course, these patterns are correlational: omitted variables, re-

verse causality, or unobserved dynamic effects could drive the results. The goal here is

simply to motivate the main analysis (Section 5).
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4.3 Fact III: Cashews, GDP, and forest cover are correlated over time

The third fact is that more cashew agroforestry over time also leads to higher local incomes

and lower forest cover. We establish this by comparing GDP, nightlights, and forest cover

within arrondissements at different cultivation levels, controlling for time fixed effects:

Yadt = β · Cadt + ΓX′
adt + αa + γdt + ϵadt (2)

where a, d, and t index arrondissements, departments, and years, respectively. Yadt is ei-

ther log nightlights, log GDP or forest cover. Cadt is the share of land area under cashew

cultivation. X′
adt is a vector of covariates including temperature, rainfall, and drought

intensity. Arrondissement fixed effects, αa, absorb time-invariant differences between ar-

rondissements. Department-by-year fixed effects, γdt, account for department-specific

factors that change over time, such as regional agricultural policy or growth trajectories.

Yearly economic benefits from cashew cultivation are associated with forest degrada-

tion (Table 3). A 10 pp. cashew expansion is associated with a 3.8% rise in nightlight

radiance (column 1) and increases GDP by 0.6%, but the effect is imprecise (column 2).

These economic gains are accompanied by a 0.3 pp. decline in forest cover (column 3).

While TWFE improve on cross-sectional comparisons (Fact II), the results remain cor-

relational due to potential reverse causality: income may influence selection into cashew

cultivation. Although this concern may be limited given widespread seed subsidies and

formal credit access throughout our study region (USDA and TechnoServe, 2015), we

nonetheless interpret these findings with caution and proceed to a 2SLS strategy next.

10Covariates include rain, temperature, lat/lon, language, nightlights, and household size.
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5 Research Design

We exploit global cashew price volatility to identify local development-environment trade-

offs from cashew cultivation in Benin. While local cashew cultivation itself may be en-

dogenous to income and forest cover, global cashew price volatility (i) strongly affects

land allocated to cashews, especially in places already specialized in cashews, and (ii) as

we argue, only affects local income and forest cover through the extensive margin (land),

conditional on price levels and intensive margin (input) responses. Our research design

leverages these features to construct a volatility-based IV for cashew cultivation.

5.1 Empirical Setup

5.1.1 Measurement

The target parameter for our analysis is given by β in Equation 2, the impact on incomes

or forests from a marginal change in land share under cashew cultivation. To identify

this parameter, we construct a shift-share instrument, zacdt, for cashew cultivation that

combines global cashew price volatility (the shift) with measures of local exposure to

price uncertainty (the share). When combined, the shift and share yield an instrument

that isolates the plausibly exogeneous component of land allocation decisions generated

by heterogeneous local responses to global price uncertainty11.

The shift-share IV consists of two components (Goldsmith-Pinkham et al., 2020). The

global “shift” is measured by the variance, Vit, of monthly cashew prices for country i in

year t, and then taking a weighted average of these variances using country output shares

as weights. The local “share” is measured as baseline arrondissement land share under

11We consider short-term responses to price volatility since we only have a four-year unbalanced panel.
The literature on dynamic models shows that this type of variation yields a lower bound estimate of the
elasticity of land use changes to prices (Scott, 2014; Araujo et al., 2020).

18



cashews, Cad(t=2015). Letting Qit be output, global price volatility and the shift-share are:

[Volatility] σ
global
t = ∑

i

Qit

∑i Qit
· Vit

[Shift-Share IV] zadt = log(σglobal
t )︸ ︷︷ ︸

shift

× Cad(t=2015)︸ ︷︷ ︸
share

(3)

Importantly, our definition of zadt is grounded in economic theory (see Appendix A.1

for details). Classical economic theory states that price volatility discourages cultivation

of risky crops (Sandmo, 1971). A contrasting view from developing countries is that spe-

cialized farmers facing limited alternatives and market imperfections may expand culti-

vation under price risk as a form of self-insurance (Barrett, 1996). This motivates our use

of baseline cultivation, which proxies for specialization, as the share component of the

shift-share instrument. Whether the self-insurance hypothesis holds is revealed by the

first stage. We next discuss instrument validity, and then define estimating equations.

5.1.2 Instrument Validity

Our IV is valid if (i) it strongly predicts the local land share allocated to cashews, and (ii) it

meets the exclusion restriction. The first criterion is tested via the first stage (Equation 5)

below. The exclusion restriction is that zadt affects local GDP and forest cover only by

influencing the extent of local cashew production. While this is fundamentally untestable,

we discuss the main threats to identification, and how we address them, here.

The main threat to identification is that price volatility (second moment) and price

level (first moment) may be correlated. When price levels are high, local GDP can increase

as farmers sell existing cashews at higher prices without converting marginal land, thus

violating the exclusion restriction. We address this by controlling for Padt := log(pglobal
t )×

Cad(t=2015) in all our regressions, where pglobal
t is measured similarly to σ

global
t , but using

average monthly cashew price level in year t of country i instead of price variance. Con-
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Table 4: Test for Pre-Trends
(1) (2) (3)

Outcomes are for time t − 1 Log NTL Log GDP Forest

Shift-share (time t) 0.043 0.019 -0.005
(0.040) (0.024) (0.003)

Controls Yes Yes Yes

Arrondissement FEs ✓ ✓ ✓
Department × Year FEs ✓ ✓ ✓
Observations 309 309 309
R2 0.984 0.887 0.892

Note: ∗ p < .1, ∗∗ p < .05, ∗∗∗ p <.01. Data are at the arrondissement-year level. Outcomes are lagged by
one period. “Shift-share” is the interaction of global cashew price variance with baseline cashew coverage.
Controls include price level interacted with baseline cashew share, agrochemical use, rain, temperature,
and drought intensity. Standard errors clustered by arrondissement.

trolling for Padt leaves identification to rely on heterogeneous exposure to shocks in global

price uncertainty, conditional on first order responses to price levels.

A related concern is that land share under cashews, the endogenous variable to be

instrumented by zadt, is an extensive margin object. If farmers react to price uncertainty

through the intensive margin, i.e., by changing input use, and this affects profits in turn,

then local incomes can again be affected without changing land share. Contextually, this

concern is minimal because raw cashew nuts are produced “virtually without chemical

inputs” (Tandjiékpon, 2010). As a safeguard, we include the application rate (kg/ha) of

agrochemicals as a control in all our regressions.

The third concern is that the share, Cad(t=2015), is endogenous if cashew-specialized

areas systematically differ from non-specialized areas. Although fixed differences are

absorbed by arrondissement fixed effects, baseline cultivation may predict differential

changes in outcomes. This only violates the exclusion restriction if Cad(t=2015) is correlated

with the shift, σ
global
t , otherwise zadt would not pick up the differential trend. The recent

literature formalizes this idea by showing that shift-share IVs with endogenous shares are

valid as long as the shock is as-good-as-random (Borusyak et al., 2022). We formally test
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this by regressing time t − 1 outcomes, Yad(t−1), on the time t instrument, zadt, as follows:

Yad(t−1) = θ · zadt + ΓX′
adt + αa + γdt + ϵadt (4)

where θ is a balance coefficient. If zadt is as-good-as-randomly assigned, then θ = 0

which implies that the shock is unrelated to pre-existing levels of income or forest cover.

X′
adt is a covariate vector including price level and input use, as described above, as well

as rain, temperature, and drought intensity. Indeed, we find θ = 0 for all outcomes

(Table 4), suggesting that price volatility does not systematically affect arrondissements

with certain pre-existing outcome levels.

5.2 Estimating Equations

Having established validity of the instrument, we specify the first stage equation as:

Cadt = π · zadt + δPadt + ζAadt + X′
adtΣ + αa + γdt + ϵadt (5)

As before, a, d, and t index arrondissements, departments, and years. zadt is the shift-

share IV described above. Padt := log(pglobal
t ) × Cad(t=2015) is the interaction of global

average cashew prices with baseline cashew cultivation, which controls for farmers’ re-

sponses to price changes. Aadt is the application rate of agrochemicals, which controls for

intensive margin responses to price uncertainty. Including Padt and Aadt are key to mit-

igating the main threats to the exclusion restriction (Section 5.1.2). Remaining terms are

the same as Equation 2. The first stage coefficient π captures extensive margin variation

in cashew cultivation that is plausibly orthogonal to local agricultural incentives.

The corresponding second stage equation can be written as:

Yadt = β · Ĉadt + δPadt + ζ Aadt + X′
adtΣ + αa + γdt + ϵadt (6)
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where Yadt measures economic outcomes or forest cover. We use log GDP per capita

from RHZ as the key economic outcome. β is the coefficient of interest: when GDP is

the outcome, β > 0 indicates that expanding cashew cultivation increases local incomes.

When forest cover is the outcome, β < 0 indicates that cashew expansion is at the ex-

pense of forests. Since cashew specialization partly depends on geography, X’adt includes

temperature, rain, and drought intensity to absorb relationships between climatic suit-

ability and outcomes. Arrondissement fixed effects, αa, absorb time-invariant differences

between arrondissements. Department-year fixed effects, γdt, absorb regional trends.

β is thus identified by changes in land allocated to cashews generated by farmers’ het-

erogeneous responses to cashew price volatility over time within an arrondissement, con-

ditional on their response to changes in price levels, and holding fixed any average differ-

ences between arrondissements and any regional climate dynamics. The main identifica-

tion assumption is that the propagation of global cashew price volatility across cashew-

specialized and non-specialized arrondissements is independent of potential outcomes.

We provided support for this assumption in the previous section (Section 5.1.2).

6 Results

This section presents formal evidence on the development-environment tradeoff from

agroforestry in Benin. Our IV estimates show that cashew cultivation degrades natural

forests without generating meaningful gains in local incomes. We explore the reasons for

muted income effects in Section 7.

6.1 Main Findings

First Stage Estimates First stage estimates of Equation 5 are reported in Table A2. The

outcome is Cadt, the share of land area under cashew cultivation. In columns 1-3, zadt

is constructed using output-weighted price variance (Section 5.1.1). Column 2 controls
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Table 5: The Development-Environment Tradeoff from Cashew Cultivation

(1) (2) (3)
Log NTL Log GDP Forest

CashewShare 0.258 0.448 -0.274∗∗∗

(0.965) (0.389) (0.070)

Log Price × CashewShare Yes Yes Yes

Agrochemicals Yes Yes Yes

Controls Yes Yes Yes

Arrondissement FEs ✓ ✓ ✓
Department × Year FEs ✓ ✓ ✓
KP (2006) F-Stat 19.84 19.84 19.84
Observations 412 412 412

Note: ∗ p < .1, ∗∗ p < .05, ∗∗∗ p <.01. Data are at the arrondissement-year level. Outcomes are trans-
formed by log(x + 0.01) to account for zero values. Column 1 is nightlights, column 2 is GDP per capita,
and column 3 is forest share of land area. “CashewShare” is the fraction of grid cells with cashew plan-
tations, instrumented with the interaction of global cashew price variance with baseline cashew coverage.
All regressions control for price level interacted with baseline cashew coverage, agrochemical use, rain,
temperature, and drought intensity. Standard errors clustered by arrondissement.

for price level and column 3, our preferred specification, also controls for input use. In

columns 4-6, zadt is constructed using alternative volatility measures. The IV strongly

predicts cashew cultivation in all specifications. The point estimate in column 3 implies

that a 10% rise in price volatility leads farmers in cashew-exposed arrondissements to

expand cultivation by 0.6 pp.12. The F-statistic is well above rule-of-thumb levels.

Second Stage Estimates Table 5 reports IV estimates of Equation 6 for economic activ-

ity and forest cover. The corresponding OLS estimates are reported in Section 4.3. The

outcome variables in columns 1-3 are log nightlights, log GDP per capita, and forest share

of land area, respectively. Standard errors are clustered by arrondissement.

Estimates of β imply that cashew cultivation sharply degrades local forests (column

3) without generating discernible income effects (columns 1-2). Although the point es-

timates in columns 1 and 2 are positive, we cannot interpret these economic gains as

12Appendix A.1 discusses the literature on positive associations between price volatility and production.
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meaningful since statistical precision is low. In contrast, β < 0 and is statistically sig-

nificant for forest cover in column 3. The point estimate implies that a 10 pp. increase

in land share under cashew cultivation reduces forest cover by 2.7 pp. Given our sup-

porting evidence for instrument validity in Section 5.1.2, we interpret these estimates as

causal evidence that expanding cashew cultivation comes at the cost of forest loss, with

little to no compensating gains in local livelihoods.

One reason that income gains are not statistically precise is that GDP data is relatively

coarse (25km×25km), obscuring highly localized changes, unlike the much finer 200m

forest cover data. Another reason is that farmers may be interested in second order ben-

efits, i.e., income smoothing opportunities offered by cashew trees, rather than first order

income gains. We provide modest evidence for both explanations in Section 7.1.

Sensitivity: Alternative Instruments To demonstrate robustness to alternative instru-

ments, Table A3 estimates Equation 6 with other measures of global cashew price volatil-

ity. Instead of output-weighted price variance, we construct zadt using standard deviations

(columns 1, 4, and 7), the coefficient of variation (columns 2, 5, and 8), and 6-month rolling

price variance (columns 3, 6 and 9). We continue to find statistically insignificant impacts

of cashew cultivation on local economic activity (columns 1-6). The impact on forest share

(columns 7-9) remains strongly negative, similar to the main estimate, and is statistically

significant across all price volatility measures.

6.2 Dynamic Estimates

Our baseline estimates characterize the development-environment tradeoff from cashew

expansion within the year. This overlooks important dynamic processes, since cashew

trees take at least two years to bear fruit. We estimate these dynamics using cumulative

lag models with up to two lags, which can mean several years since the first two periods

of our sample are four years apart. To operationalize the method, cashew coverage is
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predicted from the first stage (Equation 5), after which lags are taken and used as inde-

pendent variables in the second stage. Standard errors are corrected by the delta method.

Figure B2 presents dynamic estimates for nightlights (Panel A), GDP (Panel B), and

forest share (Panel C). White diamonds are the sum of baseline and lagged coefficients,

which measure net impacts of cashew cultivation several years later. Corresponding tab-

ular estimates showing are provided in Table A9. Although nightlights significantly in-

creases one period after cashew expansion, the effect fades by the second period. The

insignificant impact on GDP remains persistent up to two years later. In contrast, forest

loss from cashew expansion is statistically significant and remains persistent across peri-

ods. We do not interpret the larger magnitude on the first lag of forest cover as evidence

of worsening forest degradation, as confidence intervals overlap the contemporaneous

estimate. We also interpret the second lag with caution due to data loss. Overall, these

dynamic estimates imply that forest loss from cashew expansion is lasting, whereas cor-

responding economic benefits do not materialize even after several years.

6.3 Additional Robustness Checks

Having established robustness to alternative instruments (Table A3), we now probe esti-

mate sensitivity further with a variety of additional tests. Table A4 presents robustness

tests for GDP. While the main analysis finds a positive yet statistically insignificant im-

pact of land area under cashews on local GDP, the results are similar when instrumenting

the number of cashew plantations in an arrondissement instead (column 1). Estimates

also remain stable when controlling for the interaction of price volatility and non-cashew

cropland share (column 2), which accounts for substitution effects as a potential channel

through which cashew price risk affects local income. We continue to find qualitatively

positive impacts on GDP when controlling for price effects with alternative cashew price

data from the International Nut and Dried Fruit Council (column 3). Lastly, estimates

are robust to controlling for arrondissement-specific linear time trends, which flexibly
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account for “drift” in expected income driven by unobserved factors that vary across ar-

rondissements at a constant rate over time. We drop arrondissement fixed effects in this

specification because the time trends add over 100 controls (one for each arrondissement),

which leaves little variation left for identification. Table A5 shows the same robustness

tests with log nightlights as the outcome. We continue to find qualitatively positive but

statistically insignificant impacts of cashew cultivation on local economic activity.

Table A6 presents robustness tests for forestland share. We find remarkably stable and

robust negative impacts on forest cover across the same five robustness tests. Taken to-

gether, these results reinforce our finding that cashew cultivation in Benin degrades local

forests without generating meaningful economic benefits. To further probe this finding

and understand why farmers continue to cultivate cashews, we study mechanisms next.

7 Discussion

This section discusses why we find statistically imprecise income gains from cashew cul-

tivation. We then use our econometric estimates to calculate a back-of-the-envelope esti-

mate of aggregate environmental costs from cashew cultivation in Benin.

7.1 Mechanisms: Why do farmers cultivate cashews?

Our analysis yields a somewhat puzzling pattern: cashew cultivation in Benin causes

substantial forest loss without generating measurable economic gains—at least none ob-

servable in satellite GDP data. Why, then, do farmers continue growing cashews? We

consider two explanations: (i) cashews are profitable, but benefits are highly localized

and obscured in coarsely measured satellite data, and (ii) farmers grow cashews for their

second order income-smoothing benefits rather than for first order income opportunities.

We find modest evidence for each explanation.
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Reason I: Localized income effects The first reason we may not see strong economic

benefits is that, despite its major advance, gridded GDP data from RHZ may be too coarse

to capture concentrated income gains. By this line of reasoning, we should then be able to

detect income gains in household data, higher-resolution GDP data, and in sub-samples

of RHZ data where nearly all farmers grow cashews. We explore each of these in turn.

First, we already estimated household-level correlations in Section 4.2, which show

that households closer to cashew plantations tend to be wealthier. But since DHS does

not report if households cultivate cashews, it is unclear whether this correlation reflects

farmers profiting from their own cashew cultivation. To investigate this, we estimate

Equation 1 by land ownership (Table A8), and find that landowning households within

900m (median distance) of a cashew plot are significantly wealthier than landowners far-

ther away (column 1). This heterogeneity is unlikely to reflect other spatial differences

since we control for household latitude, longitude, and urbanization. Thus, it is hard to

imagine why landowners within 900m of cashew plots experience a wealth premium un-

less they profit from growing cashews themselves. This heterogeneity is also apparent

in other wealth measures such as having a flush toilet (column 2), electricity (column 3),

fridge (column 4), and an educated household head (column 5). Of course, all of these

estimates should be interpreted as correlations, as the survey data are cross-sectional.

Next, we test for income gains at finer scales using higher-resolution GDP data from

Chen et al. (2022), which predicts local GDP at 1km resolution using nightlights as weights

to distribute national GDP13. We did not use this data to begin with because it is only

available for 2015 and 2019, halving our sample to just 206 observations. With two sets of

shift-share interactions and multiple levels of fixed effects, there is insufficient variation

to estimate our 2SLS model with this data. However, TWFE estimates of Equation 2 us-

ing this data yield a positive and significant point estimate (Table A7): a 10 pp. cashew

expansion is associated with an 1.3% rise in GDP per capita. While not causal, these esti-

13Chen et al. (2022) predict total GDP in a cell. To obtain per capita estimates, we sum pixel values in
each arrondissement, do the same for gridded population from WorldPop,. and then divide the two.
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Table 6: Mechanisms: Income Volatility

(1) (2) (3) (4)
Outcome: Log(Volatility + 1) Variance Std. Dev. Coeff Var. Rolling

CashewShare -0.729 -0.659 -1.594∗∗ -0.715
(0.748) (0.518) (0.773) (0.733)

Log Price × CashewShare Yes Yes Yes Yes

Agrochemicals Yes Yes Yes Yes

Controls Yes Yes Yes Yes

Arrondissement FEs ✓ ✓ ✓ ✓
Department × Year FEs ✓ ✓ ✓ ✓
KP (2006) F-Stat 9.45 9.45 9.45 9.45
Observations 412 412 412 412

Note: ∗ p < .1, ∗∗ p < .05, ∗∗∗ p <.01. Data are at the arrondissement-year level. Outcomes are log of
annualized monthly nightlight volatility measured by variance (column 1), standard deviation (column 2),
coefficient of variation (column 3), and 6-month rolling variance (column 4). “CashewShare” is the fraction
of cells with cashew plantations, instrumented with the interaction of global cashew price variance with
baseline cashew coverage. All regressions control for price level interacted with baseline cashew coverage,
agrochemical use, rain, temperature, and drought intensity. Standard errors clustered by arrondissement.

mates illustrate that resolution matters: the development benefits of cashew agroforestry

are sharply visible in fine-grained but not in coarsely measured GDP data. This logic

explains why we find strong negative effects in fine-grained 200m forest cover data.

Lastly, to probe the income-concentration hypothesis with a more credible design, we

re-estimate our 2SLS model with RHZ data on a restricted sample of places where cashew

cultivation is widespread. If highly local (within-pixel) income gains are averaged out

in coarse GDP data, then they should be detectable in coarse data if cashew farming

is widespread across the entire GDP pixel. Conveniently, the RHZ resolution is 0.25◦,

roughly the area of an arrondissement. Figure B3 plots arrondissement level second-

stage estimates (β from Equation 6) across quintiles of baseline cultivation (Cad(t=2015)).

Positive and significant (p=0.08) income gains emerge in the fifth quintile, where most

land is planted with cashews. This exercise provides modest evidence that the noisy

effects in our main analysis reflect localized income gains blurred in coarse satellite data.
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Reason II: Second order income effects A second reason why we may not be seeing

strong income gains in the main analysis is that farmers may in fact be seeking second

order benefits—reducing income volatility—rather than first order income gains. Unlike

annual crops, this logic envisions perennial cashew trees as capital assets: requiring up-

front investment but yielding returns over time, helping to smooth income in uncertain

environments. Income stabilization may outweigh the immediate profit motive, making

cashew cultivation attractive even in the absence of observable gains in aggregate data.

Since our GDP data is only available annually, we instead test this idea by calculating the

volatility of monthly nightlights at the annual level for each arrondissement and using it

as an outcome in Equation 6. The shift-share instrument is the same as before (Section 5.1).

Table 6 presents results for four outcome measures of income volatility: variance,

standard deviation, coefficient of variation, and 6-month rolling variance. In line with

the income-stabilizing motive, cashew cultivation reduces income (nightlights) volatility

across the board, though statistical precision is only achieved when income volatility is

measured by the coefficient of variation. The point estimate implies that a 1 pp. increase

in land share under cashew cultivation reduces income volatility by 1.6%. While low pre-

cision across other volatility measures tempers strong conclusions, we interpret this table

as suggestive evidence that cashew cultivation provides income-stabilizing benefits.

7.2 Aggregate Cost-Benefit Estimates

As a final exercise, we use our econometric estimates to calculate aggregate costs and ben-

efits of expanding cashew cultivation. The challenge is that our benefit measure (income)

and cost measure (forest cover) are in different units, preventing direct comparison. We

therefore convert forest loss into dollars using the social cost of carbon (SCC).

To calculate costs, we use the IV coefficient in Table 5 to estimate deforestation from

increasing land share for cashews by 10 pp. Since β = −0.274 (column 3) and the average

arrondissement is 36,000 ha., then a 10 pp. increase in cashew land share causes forest loss
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of 0.10 ×−0.274 × 36, 000 = −986.4 ha. per arrondissement. We convert this to dollars

using the SCC. We focus on carbon for simplicity, acknowledging that forests provide a

variety of ecosystem services. The carbon stock of Benin’s forests is about 389 tCO2/ha

(Houssoukpèvi et al., 2022). Using the most recent SCC estimate of $USD 51/tCO2 from

the Interagency Working Group convened by the Obama Administration (IWG on Social

Cost of Carbon, 2013), and the fact that there are 103 arrondissements in the study area,

the aggregate ecological cost of cashew expansion is about $USD 2 billion. The corre-

sponding cost is $USD 7.3 billion using the SCC from Rennert et al. (2022).

To calculate aggregate benefits, we conduct a similar exercise using the GDP coeffi-

cient in column 2 of Table 5 (β = 0.448). This calculation is meant only for qualitative

comparison since β is statistically insignificant. Coefficient magnitude implies that in-

creasing cashew land allocation by 10 pp. raises GDP per capita by 4.48%. Relative to

mean GDP per capita of $USD 1,172 (Table 1), this amounts to 1, 172 × 0.0448 = $52.5 per

person. Given mean arrondissement population of 20,644 and 103 arrondissements in the

study area, the aggregate gain is $USD 111.6 million. If we use the GDP coefficient from

cashew-dominated areas (quintile 5 from Figure B3), which is statistically significant, the

aggregate benefit is $USD 144.5 million.

Thus, the implied cost-benefit ratio using the most conservation SCC is 18 using the

main GDP estimate and 14 using the binned estimate. In other words, for each dollar

earned from cashew cultivation, the ecological cost is $14-$18. This represents a lower

bound since the cost is entirely based on carbon and excludes other ecosystem services.

8 Conclusion

This paper investigates the development-environment tradeoff from cultivating cash crops

in Benin during 2015-2021. We use novel, remotely-sensed data on cashew plantations to

study impacts of cultivation on local incomes and forest cover. While many studies have
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documented the development impacts of agriculture, and other have documented envi-

ronmental impacts, few have studied them together in the same context.

We uncover a nuanced development-environment tradeoff: cashew cultivation de-

grades local forests without generating measurable economic gains, at least none observ-

able in coarsely measured GDP data. We document strong forest loss and weak income

gains in both a TWFE design as well as a robust IV design using global cashew price

volatility as part of a shift-share instrument.

Probing our results further, we find that they do not imply that cashew cultivation is

unprofitable. Rather, we find evidence that income gains are concentrated in localized

pockets, which are averaged out in coarsely measured GDP data. We also find modest

evidence for a second explanation: farmers value cashew trees for their second order

benefits—reducing income volatility—rather than first order income gains.

Our results have several broader implications. First, they provide a benchmark for

the costs and benefits of cash crops, which is especially relevant as other West African

countries look to reinvigorate the agroforestry sector. Our cost-benefit analysis suggests

that the ecological cost per dollar generated from cash crops is about $USD 14-18. Second,

our findings underscore the amount of savings that can be realized through sustainable

development policy. For example, through investments in agricultural productivity on

existing land, there is less need to encroach into neighboring forestland, leading to gains

from avoided deforestation (Abman and Lundberg, 2024; Abman et al., 2024).

Our findings should be interpreted with certain caveats. In terms of external validity,

the estimates pertain to a small country with a unique land tenure system and climate

suitable for cashews. It is unclear whether our findings generalize to settings outside of

West Africa. In terms of internal validity, our IV estimates rely on relatively coarse grid-

ded GDP data, which has several limitations. Although we complemented this data with

data from cross-sectional surveys and nightlights, more research is needed to measure

income effects of cashew agroforestry at the household level.
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A Appendix

A.1 Price Volatility and Land Cultivation

Identification via our shift-share instrument relies on the interaction of global price volatil-

ity with baseline cashew land share to generate a source of exogenous variation land allo-

cated to cashew production (Section 5). This appendix elaborates the economic logic and

empirical evidence linking price volatility to land cultivation decisions.

Land allocation decisions under crop price uncertainty depend on farmers’ risk pref-

erences and available risk coping strategies. Classical economic theory predicts that price

volatility discourages cultivation of risky crops. Sandmo (1971) provides the canonical

theory that risk-averse producers facing higher price variance reduce output, particularly

at the extensive margin. This theory is supported by substantial empirical evidence from

Sub-Saharan Africa and elsewhere (Krah, 2023; Lundberg and Abman, 2022; Haile et al.,

2016). Under this view, we would expect cashew farmers in Benin to reduce cultivated

area in response to greater cashew price volatility.

A contrasting view suggests that price volatility may in fact increase cultivation—

particularly among farmers already specialized in the crop. To see this, note that cashew

trees are capital assets that involve high upfront costs. For farmers with established or-

chards, agronomic know-how, and market relationships, the marginal costs of expansion

are low. Even under volatile prices, these farmers may respond positively to price sig-

nals as long as average prices remain favorable. This channel is especially salient when

market frictions limit risk-mitigation strategies (Suri and Udry, 2022). This logic echoes

Barrett (1996), who shows that under price uncertainty, resource-constrained households

may respond by over-allocating land to buffer against income volatility. While few em-

pirical studies test this alternative mechanism, the closest is Bellemare et al. (2020), which

finds no empirical support for the Sandmo (1971) prediction.
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A.2 Appendix Tables

Share of New Cashew Plantations Outside of Forests
Year 15% Threshold 20% Threshold 25% Threshold
2019 0.908 0.971 0.996
2020 0.950 0.997 0.999
2021 0.908 0.972 0.995

Table A1: Share of new cashew plantations not classified as forests.
Note: Cell values are the share of new cashew plantations (planted between the corresponding row year
and the prior year) not classified as forests by VCF. VCF pixel values (percent forest) are classified as forest
if they are above the threshold (columns).

Table A2: First Stage Estimates

(1) (2) (3) (4) (5) (6)

Log Volatility × Cad(t=2015) 0.057∗∗∗ 0.062∗∗∗ 0.062∗∗∗ 0.134∗∗∗ 0.172∗∗ 0.232∗∗∗

(0.013) (0.014) (0.014) (0.030) (0.074) (0.059)

Log Price × Cad(t=2015) No Yes Yes Yes Yes Yes

Agrochemicals No No Yes Yes Yes Yes

Controls Yes Yes Yes Yes Yes Yes

Volatility Measure Var Var Var SD CV Roll
Arrondissement FEs ✓ ✓ ✓ ✓ ✓ ✓
Department × Year FEs ✓ ✓ ✓ ✓ ✓ ✓
KP (2006) F-Stat 18.65 20.17 19.84 19.43 5.40 15.62
Observations 412 412 412 412 412 412

Note: ∗ p < .1, ∗∗ p < .05, ∗∗∗ p <.01. Data are at the arrondissement-year level. The outcome is land area
under cashews. Volatility is measured as variance (columns 1-3), standard deviation (column 4), coefficient
of variation (column 5), and 6-month rolling variance (column 6). Cad(t=2015) is cashew land share in 2015.
“Price” is global average monthly prices in year t. All specifications include controls for agrochemical use,
rain, temperature, and drought intensity. Standard errors clustered by arrondissement.
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Table A3: Robustness to Alternative Volatility Measures
Outcome: Log NTL Outcome: Log GDP Outcome: Forest Share

(1) (2) (3) (4) (5) (6) (7) (8) (9)

CashewShare 0.124 -1.817 0.007 0.516 1.493 0.575 -0.272∗∗∗ -0.247∗∗ -0.270∗∗∗

(0.965) (1.898) (0.973) (0.406) (0.953) (0.422) (0.070) (0.124) (0.070)

Log Price × CashewShare Yes Yes Yes Yes Yes Yes Yes Yes Yes

Agrochemicals Yes Yes Yes Yes Yes Yes Yes Yes Yes

Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes

IV Volatility Measure SD CV Roll SD CV Roll SD CV Roll
Arrondissement FEs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Department × Year FEs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
KP (2006) F-Stat 19.43 5.40 18.75 19.43 5.40 18.75 19.43 5.40 18.75
Observations 412 412 412 412 412 412 412 412 412

Note: ∗ p < .1, ∗∗ p < .05, ∗∗∗ p <.01. Data are at the arrondissement-year level. “Cashew Share” is land
share under cashew cultivation, instrumented with global cashew price volatility interacted with baseline
cashew share. Price volatility measures include standard deviation (columns 1, 4, 7), coefficient of variation
(columns 2, 5, 8), and rolling volatility (column 3, 6, 9). “Price” is global average monthly prices in year t.
All specifications include controls for agrochemical use, rain, temperature, and drought intensity. Standard
errors clustered by arrondissement.

Table A4: Robustness Tests: Log GDP

(1) (2) (3) (4)

NumberPlantations 0.025
(0.022)

CashewShare 0.571 1.028 0.436
(0.477) (0.660) (0.447)

Log Volatility × CropShare No Yes No No

Log Price × CashewShare Yes Yes Yes Yes

Agrochemicals Yes Yes Yes Yes

Controls Yes Yes Yes Yes

Linear Trend No No No Yes

Arrondissement FEs ✓ ✓ ✓
Department × Year FEs ✓ ✓ ✓ ✓
Price Data FAO FAO INDFC FAO
Observations 412 412 412 412
F-Statistic 19.03 16.94 9.45 14.91

Note: ∗ p < .1, ∗∗ p < .05, ∗∗∗ p <.01. Data are at the arrondissement-year level. The outcome is GDP
per capita and transformed by log(x + 0.01) to account for zero values. “NumberPlantations” is number
of cashew plantations per km2 in an arrondissement. “CashewShare” is land share under cashews. Both
are instrumented with global cashew price variance interacted with baseline cashew share. “Volatility” is
measured by price variance. “Price” is global average monthly prices in year t. “CropShare” is land area
under non-cashew crops. All specifications include controls for agrochemical use, rain, temperature, and
drought intensity. Standard errors clustered by arrondissement.
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Table A5: Robustness Tests: Log Nightlights

(1) (2) (3) (4)

NumberPlantations 0.015
(0.055)

CashewShare -0.298 1.090 0.134
(1.105) (1.048) (1.130)

Log Volatility × CropShare No Yes No No

Log Price × CashewShare Yes Yes Yes Yes

Agrochemicals Yes Yes Yes Yes

Controls Yes Yes Yes Yes

Linear Trend No No No Yes

Arrondissement FEs ✓ ✓ ✓
Department × Year FEs ✓ ✓ ✓ ✓
Price Data FAO FAO INDFC FAO
Observations 412 412 412 412
F-Statistic 19.03 16.94 9.45 14.91

Note: ∗ p < .1, ∗∗ p < .05, ∗∗∗ p <.01. Data are at the arrondissement-year level. The outcome is nightlight
radiance and transformed by log(x + 0.01) to account for zero values.“NumberPlantations” is number of
cashew plantations per km2 in an arrondissement. “CashewShare” is land share under cashews. Both
are instrumented with global cashew price variance interacted with baseline cashew share. “Volatility” is
measured by price variance. “Price” is global average monthly prices in year t. “CropShare” is land area
under non-cashew crops. All specifications include controls for agrochemical use, rain, temperature, and
drought intensity. Standard errors clustered by arrondissement.
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Table A6: Robustness Tests: Forest Cover
(1) (2) (3) (4)

NumberPlantations -0.016∗∗∗

(0.004)

CashewShare -0.304∗∗∗ -0.290∗∗ -0.268∗∗∗

(0.088) (0.129) (0.080)

Log Volatility × CropShare No Yes No No

Log Price × CashewShare Yes Yes Yes Yes

Agrochemicals Yes Yes Yes Yes

Controls Yes Yes Yes Yes

Linear Trend No No No Yes

Arrondissement FEs ✓ ✓ ✓
Department × Year FEs ✓ ✓ ✓ ✓
Price Data FAO FAO INDFC FAO
Observations 412 412 412 412
F-Statistic 19.03 16.94 9.45 14.91

Note: ∗ p < .1, ∗∗ p < .05, ∗∗∗ p <.01. Data are at the arrondissement-year level. The outcome is forestland
share. “NumberPlantations” is number of cashew plantations per km2 in an arrondissement. “Cashew-
Share” is land share under cashews. Both are instrumented with global cashew price variance interacted
with baseline cashew share. “Volatility” is measured by price variance. “Price” is global average monthly
prices in year t. “CropShare” is land area under non-cashew crops. All specifications include controls for
agrochemical use, rain, temperature, and drought intensity. Standard errors clustered by arrondissement.

Table A7: Mechanisms: High-Resolution GDP Data

(1)
Log GDP

CashewShare 0.134∗∗∗

(0.045)

Controls Yes

Data Source ✓
Arrondissement FEs ✓
Department × Year FEs 206
Observations 0.998

Note: ∗ p < .1, ∗∗ p < .05, ∗∗∗ p <.01. Data are at the arrondissement-year level for 2015 and 2019. The
outcome is GDP per capita from Chen et al. (2022), transformed by log(x + 0.01) to account for zero values.
“Cashew share” is the fraction of arrondissement land area under cashews. All specifications control for
rain, temperature, and drought intensity. Standard errors clustered by arrondissement.
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Table A8: Mechanisms: Wealth and Farm Size
(1) (2) (3) (4) (5)

Wealth Toilet Elec. Fridge Educated

Land owner -0.575∗∗∗ -0.030∗∗∗ -0.107∗∗∗ -0.027∗ -0.128∗∗∗

(0.066) (0.011) (0.031) (0.014) (0.031)

Near Cashew × Land owner 0.206∗∗ 0.029∗∗ 0.086∗∗ 0.030∗ 0.076∗

(0.095) (0.012) (0.041) (0.016) (0.042)

Near cashew (=1) 0.247 -0.029 0.066 -0.069∗∗ -0.013
(0.155) (0.021) (0.067) (0.030) (0.067)

Household Controls Yes Yes Yes Yes Yes

Geography Controls Yes Yes Yes Yes Yes

Arrondissement FEs ✓ ✓ ✓ ✓ ✓
Observations 2866 2866 2866 2866 2866
R2 0.533 0.207 0.366 0.101 0.193

Note: ∗ p < .1, ∗∗ p < .05, ∗∗∗ p <.01. Data are a household cross section. “Landowner” indicates if
the household owns farmland. “Near Cashew” indicates whether the household’s DHS cluster is below
median distance to the nearest cashew plot. The outcome in column 1 is a wealth index between 1-5. The
outcome in remaining columns are indicators for having a flush toilet, electricity, fridge, and an educated
(> secondary school) household head. All regressions include survey weights and controls for household
size, language, rain, temperature, lat/lon, and nightlights. Standard errors are heteroskedasticity-robust.

Table A9: Dynamic Estimates

Log NTL Log GDP Forest Share

(1) (2) (3) (4) (5) (6)

CashewShare (No Lag) -0.013 3.857 0.248 0.657 -0.240∗∗∗ -0.709∗∗∗

(0.886) (2.785) (0.239) (0.445) (0.061) (0.180)

Cashew Share (Lag 1) 4.378∗ 3.261 -1.802 0.571 -0.215 -1.158∗∗∗

(2.216) (3.370) (1.240) (1.163) (0.134) (0.317)

Cashew Share (Lag 2) -2.154 -0.185 -0.736∗∗∗

(2.727) (1.163) (0.268)

Cumulative Lag 4.365 4.964 -1.554 1.043 -0.455 -2.603
S.E. (Delta Method) 2.233 6.132 1.257 2.249 0.124 0.598
p-value 0.051 0.418 0.216 0.643 0.000 0.000

Note: ∗ p < .1, ∗∗ p < .05, ∗∗∗ p <.01. Lagged values are predictions of CashewShareadt from the first stage
(Equation 5). “Cumulative Lag” reports the sum of the contemporaneous effect (No Lag) and corresponding
lagged coefficients in each column. Standard errors in the footer refer to the cumulative estimate and are
computed by the delta method. All specifications include controls for price levels, agrochemical use, rain,
temperature, and drought intensity. Standard errors clustered by arrondissement.
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B Appendix Figures

Figure B1: Cashew Plot Delineation
Note: Left panel shows the study area along with four example cashew plantations (red points). Right
panel shows high resolution classification model output.
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Figure B2: Dynamic Effects
Note: “Contemporaneous” repeats the main 2SLS result. Lagged coefficients (white diamonds) use pre-
dicted values of CashewShareadt from the first stage (Equation 5) using the shift-share IV. “Sum L0-L1” adds
the first lag to the main specification and reports the sum of coefficients on the first lag and baseline effect,
and so on. Shaded bars are confidence intervals. All specifications include controls for price levels, agro-
chemical use, rain, temperature, and drought intensity. Standard errors clustered by arrondissement.
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Figure B3: IV Estimates by Quintiles of Baseline Cashew Coverage
Note: White diamonds are coefficients from the second stage equation (Equation 6) across quintiles of
baseline cashew cover. Bars are 90 percent confidence intervals. All specifications control for price levels,
agrochemical use, rain, temperature, and drought intensity. Q2 is omitted from presentation due to overly
large standard errors which warp the graph scale. Standard errors clustered by arrondissement.
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